DEMON
A Local-first Discovery Method For Overlapping Communities

Michele Coscia1, Giulio Rossetti2,3, Fosca Giannotti2, Dino Pedreschi2,3

1 Harvard Kennedy School, Cambridge, MA, US michele_coscia@hks.harvard.edu
2 ISTI - CNR KDDLab, Pisa, Italy {fosca.giannotti, giulio.rossetti}@isti.cnr.it
3 Computer Science Dep., University of Pisa, Italy pedre@di.unipi.it

KDD 2012, Beijing, August 14th 2012
Outline

• Communities and complex networks
 • A matter of perspective

• DEMON Algorithm
 • Properties
 • Experiments
 • Evaluation

• Future Works & Conclusions
Communities

• Communities can be seen as the basic bricks of a network

• In simple, small, networks it is easy to identify them by looking at the structure..
...but real world networks are not “simple”

- We can’t identify easily different communities
- Too many nodes and edges
Are they two different phenomena?

No!
A Matter of Perspective

- The only difference is in the scale
- Locally, for each node the structure makes sense
- Globally, we are tangled in the complex overlap

Idea: a bottom-up approach!
Outline

• Communities and complex networks
 • A matter of perspective

• DEMON Algorithm
 • Properties
 • Experiments
 • Evaluation

• Future Works & Conclusions
Reducing the complexity

Real Networks are Complex Objects

Can we make them “simpler”?

Ego-Networks

(networks builted upon a focal node, the "ego", and the nodes to whom ego is directly connected to plus the ties, if any, among the alters)
DEMON Algorithm

• For each node n:
 1. Extract the Ego Network of n
 2. Remove n from the Ego Network
 3. Perform a Label Propagation
 4. Insert n in each community found
 5. Update the raw community set C

• For each raw community c in C
 1. Merge with “similar” ones in the set (given a threshold)
 (i.e. merge iff at most the ε% of the smaller one is not included in the bigger one)

Two nice properties

- **Incrementality:**
 Given a graph G, an initial set of communities C and an incremental update ΔG consisting of new nodes and new edges added to G, where ΔG contains the entire ego networks of all new nodes and of all the preexisting nodes reached by new links, then

 $$DEMON(\Delta G \cup G, C) = DEMON(\Delta G, DEMON(G, C))$$

- **Compositionality:**
 Consider any partition of a graph G into two subgraphs G_1, G_2 such that, for any node v of G, the entire ego network of v in G is fully contained either in G_1 or G_2. Then, given an initial set of communities C:

 $$DEMON(G_1 \cup G_2, C) = \text{Max}(DEMON(G_1, C), DEMON(G_2, C))$$

Those property makes the algorithm highly parallelizable: it can run independently on different fragments of the overall network with a relatively small combination work.
Experiments

Networks (with metadata):

- Congress
 (nodes US politicians, connected if they co-sponsor the same bills)

- IMDb
 (nodes Actors, connected if they play in the same movies)

- Amazon
 (nodes Products, connected if they were purchased together)

Compared Algorithms:

- Infomap, non-overlapping state-of-the-art

- HLC, overlapping state-of-the-art
Quality Evaluation – Community size

| Network | Demon $|C|$ | $|\bar{c}|$ | HLC $|C|$ | $|\bar{c}|$ | Infomap $|C|$ | $|\bar{c}|$ | Modularity $|C|$ | $|\bar{c}|$ | Walktrap $|C|$ | $|\bar{c}|$ |
|-----------|--------|---------|--------|---------|--------|---------|--------|--------|---------|--------|---------|
| Congress | 425 | 63.3671 | 1,476 | 4.5867 | | | 6 | 87.6667| 3 | 175.3333| 7 | 71.8571 |
| IMDb | 14,004 | 12.6824 | 88,119 | 8.3426 | | | 5,991 | 27.1574| 4,746 | 11.9157 | 7,877 | 7.1781 |

Table 3: Statistics of the community set returned by the different algorithms.

- $|C|$ number of communities
- $|\bar{c}|$ average community size
Quality Evaluation - Label Prediction

- Multilabel Classificator (BRL, Binary Relevance Learner)
 - Community memberships of a node as known attributes, real world labels (qualitative attributes) target to be predicted;

<table>
<thead>
<tr>
<th>Network</th>
<th>DEMON</th>
<th>HLC</th>
<th>Infomap</th>
<th>Modularity</th>
<th>Walktrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congress</td>
<td>0.21275</td>
<td>0.14740</td>
<td>0.00535</td>
<td>0.00099</td>
<td>0.00725</td>
</tr>
<tr>
<td>IMDb</td>
<td>0.44252</td>
<td>0.48078</td>
<td>0.38470</td>
<td>0.10692</td>
<td>0.17488</td>
</tr>
</tbody>
</table>

Table 2: The F-Measure scores for Congress and IMDb dataset and each community partition.
Quality Evaluation - Community Cohesion

• How good is our community partition in describing real world knowledge about the clustered entities?
 • “Similar nodes share more qualitative attributes than dissimilar nodes”

\[CQ(P) = \frac{\sum_{(n_1, n_2) \in P} |QA(n_1) \cap QA(n_2)|}{\sum_{(n_1, n_2) \in E} |QA(n_1) \cup QA(n_2)|} \]

Iff \(CQ(P) > 1\) we are grouping together similar nodes

<table>
<thead>
<tr>
<th>Network</th>
<th>DEMON</th>
<th>HLC</th>
<th>Infomap</th>
<th>Modularity</th>
<th>Walktrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congress</td>
<td>1.1792</td>
<td>1.1539</td>
<td>1.0229</td>
<td>1.0373</td>
<td>1.0532</td>
</tr>
<tr>
<td>IMDb</td>
<td>5.6158</td>
<td>5.1589</td>
<td>0.1400</td>
<td>1.4652</td>
<td>0.0211</td>
</tr>
</tbody>
</table>

Table 4: The Community Quality scores for Congress and IMDb dataset and each community partition.
Outline

• Communities and complex networks
 • A matter of perspective

• DEMON Algorithm
 • Properties
 • Experiments
 • Evaluation

• Future Works & Conclusions
Future works

• Extension to weighted and directed networks (completed)

• Parallel implementation

• Modify the merging strategy (in progress)
 • Hierarchical merging
 • ...

• Framework structure
 • i.e. different hosted algorithms that can be used in place of LP to extract communities (according to different definitions)
Conclusions

- DEMON approaches the community discovery problem through the analysis of simpler structures (ego-networks)

- The proposed algorithm outperforms state-of-the-art methodologies

- Possible parallel implementation: high scalability
Thanks!

Questions?

DEMON

Democratic Estimate of the Modular Organization of a Network

Code available @ http://kdd.isti.cnr.it/~giulio/demon/