Optimal Spatial Resolution for the Analysis of Human Mobility

Michele Coscia², Salvatore Rinzivillo ${ }^{1}$, Fosca Giannotti ${ }^{1}$, Dino Pedreschi ${ }^{3}$

${ }^{1}$ KDDLab ISTI-CNR, Via G. Moruzzi, 1, Pisa, Italy, Email: rinzivillo@isti.cnr.it
${ }^{2}$ CID - Harvard Kennedy School, 79 JFK Street, Cambridge, MA, US, Email: michele coscia@hks.harvard.edu
${ }^{3}$ KDDLab University of Pisa, Largo B. Pontecorvo, 3, Pisa, Italy, Email: pedre@di.unipi.it

Human Mobility Studies

Macro Level:

- Borders
- Migration flows

Micro Level:

- City traffic
- Evaluation of the value of the territory
- ...
- ...

Data Granularity Problem

On one hand
Rough granularity (or GSM vs GPS data) yields to not accurate results

On the other hand
We need to reduce GPS granularity to connect it with the territory with a grid

The Grid

We generate several versions Of the grid using Multiple resolutions

Every movement is approximate With the corresponding square On the grid

From the GPS to the Grid

From the Grid to the Network

The Result

Network Properties

Larger Cells = More Aggregate Trips = More Reciprocity

Network Properties

Detecting Borders

Community Discovery

Our Choice: Infomap

The first level of the hierarchy unveils the administrative borders of the provinces

Community Quality

Conclusions

Finer resolutions create over detailed networks where smaller components are associated to several small clusters

Large cell sizes, on the contrary, generate an excessive aggregation of local movements
We derived a process to identify the optimal cell size for real world problems
Future directions: A multiresolution grid

Thank you for your attention

(a) 500 m

(b) 1000 m

(c) 2000 m

Questions?

