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Abstract—The availability of massive network and mobility
data from diverse domains has fostered the analysis of human be-
haviors and interactions. This data availability leads to challenges
in the knowledge discovery community. Several different analyses
have been performed on the traces of human trajectories, such
as understanding the real borders of human mobility or mining
social interactions derived from mobility and viceversa. However,
the data quality of the digital traces of human mobility has a
dramatic impact over the knowledge that it is possible to mine,
and this issue has not been thoroughly tackled so far in literature.
In this paper, we mine and analyze with complex network
techniques a large dataset of human trajectories, a GPS dataset
from more than 150k vehicles in Italy. We build a multiresolution
grid and we map the trajectories with several complex networks,
by connecting the different areas of our region of interest. Then
we analyze the structural properties of these networks and the
quality of the borders it is possible to infer from them. The
result is a significant advancement in our understanding of the
data transformation process that is needed to connect mobility
with social network analysis and mining.

I. INTRODUCTION

The availability of massive network and mobility data from
diverse domains has fostered the analysis of human behaviors
and interactions. Traces of human mobility can be collected
with a number of different techniques. We can obtain Global
Positioning System logs, or GSM data referring to which
cell tower a cellphone, carried and used by a person, was
connecting. The result is a huge quantity of data about tens
of thousand people moving along millions of trajectories.

This data availability leads to challenges in the knowledge
discovery community. Several different analyses have been
performed on the traces of human trajectories. For example,
[5], [11] are two examples of studies able to detect the
real borders of human mobility: given how people move,
the authors were able to cluster different geographical areas
in which people are naturally bounded. Another analysis
example connects mobility with social networking [13], [1].
The fundamental question in these cases is: do people go in
the same places because they can find their friends there or do
people become friends because they go in the same places?

However, there is an important issue to be tackled before
performing any kind of social knowledge extraction from
mobility data. It has been proved that the data quality of the
digital traces of human mobility has a dramatic impact over
the knowledge that it is possible to mine. For example, in

[12] authors perform a trajectory clustering analysis, with GPS
data that are successively transformed in GSM-like data. They
prove that the knowledge extracted with the semi-obfuscated
data is more prone to data noise and performs worse. The
conclusion is that mobility analysis should be performed with
the high data precision that only GPS is able to provide.

An open question is left unanswered, and it is the main focus
of this paper. Given that we use GPS data, how can we connect
it to the territory? In general, GPS does not need to be mapped
on the territory, as it already provides the coordinates of the
person moving. However, usually we are dealing with two
kinds of constraints. First, we are studying vehicles mobility,
thus the “data points” are not free to move on a bi-dimensional
surface, but they are constrained by the road graph. Second, if
we want to apply social network analysis techniques on these
data, such as the ones applied in [5], [11] namely community
discovery over a network of points in space to find the borders
of mobility, we need to discretize the territory in cells, as it
is impossible to translate a continuous surface into a graph.

These two considerations force us to discretize the contin-
uous human trajectories into a grid and then operate social
network analysis on that grid. Should we use external infor-
mation about the territory, such as the political organization
in towns and municipalities? Or should we create a regular
grid? In this paper, we propose an empirical study aimed at
tackling these questions. We collect data from 150k vehicles
moving on Tuscany (a region of Italy) road graph. We create
a multiresolution grid representing Tuscany, for each cell size
we generate a cell-cell complex network: cells c1 and c2 are
connected with a directed edge if there is at least one trajectory
starting from c1 and ending in c2. The edge is weighted
according to how many trajectories connect the two cells.

Given our set of networks, one for each resolution of the
grid, we analyze each network’s structure. Given a collection
of network measures, we are able to describe the network
result of the translation of human trajectories to the grid net-
work. We then apply community discovery on these networks,
following our previous work [6], to identify the borders of
human mobility. Our focus is to evaluate which grid resolution
is leading to the best results. We evaluate each network results
quantitatively, using different quality scores, and qualitatively,
looking at the resulting borders and confronting them with
what we know about Tuscany mobility.
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The rest of the paper is organized as follows. In Section
II we present the works related to the present paper: the
connections between mobility and social network analysis
and mining. Section III contains our data description and the
creation of the multiresolution grid. In Section IV we evaluate
the mobility grid and finally Section V concludes the paper
presenting also some future insights.

II. RELATED WORK

In literature, there are several works exploring the applica-
tion of social network analysis to mobility data. One example
is [11], where it is proposed to represent trajectories with
a graph, then community discovery techniques are applied
to discover areas frequently connected by the same set of
trajectories. The mobility data used is manually submitted
information about the movements of one dollar bills in the US
territory. In [5] the same approach is implemented, but using
GSM cellphone data: each trajectory is composed by the cell
tower to which a particular device was connected. The main
problems of these approaches is that the data source leads to
unavoidable approximations, significantly lowering the quality
of the results [12]. We improve over these works by using a
reliable data source, i.e. direct GPS tracks.

Another class of works is more focused on the links between
mobility and social relationships. In [13] a new link prediction
technique (to quantify how much likely is to observe new
connections in a complex network [8]) is proposed. The
authors use for the prediction not only the topology of the
graph, but also mobility information about the nodes of the
network. The orthogonal problem is tackled in [1]: given
the social relationships among a set of individuals, the study
aims to predict the trajectories of these individuals. Not only
GSM data about real people are used: some studies focus on
movements of virtual spaceships in an online game [9]. Our
paper focuses on the prerequisites of these works, i.e. how to
define the underlying movement graph.

Finally, as community discovery plays an important role
in this paper, we report two surveys about it: [3], focused
on an empirical evaluation of many different algorithms;
and [2], aiming to classify the many different community
discovery approaches according to the underlying definition
of community they operate on. When clustering algorithms
enable the multi-level identification of “clusters-in-a-cluster”,
they are defined “hierarchical”. This is useful for mobility
networks, as it is necessary to explore borders at different
granularity levels: conglomerates of cities, cities and even
neighborhoods.

Some interesting algorithms are [7], [4], [10], employing
different community clustering strategies. We focus on [7],
as it is the algorithm we used in the framework presented in
this paper. The Infomap algorithm uses the probability flow
of random walks on a graph as a proxy for information flows
in the real system and decomposes the network into clusters
by compressing a description of the probability flow. The
algorithm looks for a cluster partition M into m clusters so
as to minimize the expected description length of a random
walk. The expected description length, given a partition M , is
given by L(M) = qH(Q) +

∑m
i=1 piH(Pi). L(M) is made

Fig. 1: (Left) A sample of the trajectory dataset used for the
experiments. (Center) A partition based on a regular grid with
cells of size 2000m. (Right) A partition with a grid with
20,000m cell size.

up of two terms: the first is the entropy of the movements
between clusters and the second is entropy of movements
within clusters. The entropy associated to the description of the
n states of a random variable X that occur with probabilities
pi is H(X) = −

∑n
1 pi log2 pi. The entropy is weighted

by the probabilities with which they occur in the particular
partitioning. More precisely, q is the probability that the
random walk jumps from a cluster to another on any given step
and pi is the fraction of within-community movements that
occur in community i plus the probability of exiting module
i. Accordingly, H(Q) is the the entropy of clusters names and
H(Pi) the entropy of movements within cluster i, including
the exit from it. The algorithm uses a deterministic greedy
search and then refines the results with simulated annealing.

III. GRID CREATION

We used a dataset of spatio-temporal trajectories of private
cars consisting of around 10M trips performed by 150,000
vehicles. The GPS tracks were collected by Octo Telematics
S.p.A. Each trajectory is represented as a time-ordered se-
quence of tuples (id, x, y, t), where id is the anonymized car
identifier, x and y are the latitude and longitude coordinates,
t is the timestamp. The GPS tracks were collected from 1st
May to 31st May 2011. The GPS device automatically starts
collecting the positions when the car is turned on and it
stops when it is turned off. Octo Telematics serves the 2% of
registered vehicles in Italy. In our collection, we focus on the
traces of the vehicles circulating in a bounding box containing
Tuscany Region during the period of observation.

Given the spatial precision of GPS points, it is necessary to
process the data in order to generalize neighbor points with a
spatial region. Since the spatial precision of a GPS position
can have an error of few meters, we need to determine the
most suitable generalization for complex network analysis.
Our approach consists in studying the properties of a complex
network extracted from a regular grid composed of regular
squares with edges of the same length.

As a starting point, we consider the bounding box contain-
ing our GPS trajectories, the minimum geographical rectangle
containing all the points, say h and w respectively the height
and width of the box. Chosen a length l for the edge of a cell,
we divide the bounding box into a grid of cells with r rows
and c columns, where r = dh/le and c = dw/le. The resulting
grid is aligned with the lower left corner of the original box.

There are several criteria to partition the territory for a
spatial generalization step. In this research, we focus on the
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spatial resolution of a regular division, since it enables us to
control the granularity with a uniform distribution of the cells.
Given a spatial partition, we can extract a network model to
represent human movements on the grid. Each travel is mapped
to a pair of cells: cs, the starting cell, and ce the destination
cell. The network is determined by a set of nodes, representing
the cells, and a set of edges, representing the travels between
two cells. Each edge is weighted with the number of travels
connecting the corresponding cells.

Varying the grid resolution, we are able to generate different
network perspectives, and for each network we can derive
basic statistics on its topology. Network basic statistics are
a proxy to understand part of the topology of the network
itself. Given the value of measures like average degree or path
length, we understand if the network representation presents a
topology likely to include a modular structure, thus community
discovery can be used effectively.

To refer to distinct granularity, we call each network as
“od net ” followed by the cell size in meters of the underlying
grid. Figures 2(a-b) depicts two different sets of statistics.
Please note that the figures do not report the absolute value
of the particular network measurement, but their relative value
w.r.t the value obtained for the network with the largest grid
cell, i.e. “od net 40000”. We cannot report the actual values
for all networks for lack of space1.

First, the number of nodes and edges, as depicted in Figure
2(a-b), drops dramatically by passing from a grid size of 200m
to 10,000m, while sizes greater than 15,000m do not create
much difference. Second, the number of edges drops with a
different rate w.r.t the drop in the number of nodes. This is
consistent to what we see in the Figure 2b: the average degree
increases until a maximum density for a cell size in between
10-15,000m. The average path length drops consistently, while
reciprocity and avg node weight increase: larger cells includes
more trips and it is more probable to have reciprocal edges.

If we want significant results with community discovery we
need dense networks with small-world properties with not too
many small isolated components, and we want to achieve this
objective with the smallest possible grid cell, thus with more
nodes and edges, to have a more fine-grained description of
reality. A preliminary conclusion may be that the optimal cell
size should be around 5,000m: smaller cells generate networks
with lower density and too many components.

Another important characteristic of the analyzed networks
can be observed by when plotting their degree distributions
(see Figure 2c). For clarity, we plotted only the degree
distributions of the networks generated with a cell size of
500m, 1,000m, 2,000m, 5,000m, 10,000m, 20,000m and
40,000m. We can see that all the distributions present a heavy
exponential cutoff. However, while the distributions for small
cell sizes are similar, just on different scales, from cell sizes
larger than 10,000m the exponential cutoff is increasingly
stronger. This means that networks generated with larger
cells lack of a peculiar characteristic of many large complex
networks, i.e. the presence of hubs, a set of nodes very highly
connected. As their average shortest path is still low, it means

1Complete table: http://www.di.unipi.it/∼coscia/borders/gridstatistics.htm

that their “small world” properties are not due to the network
connectivity itself, but instead to the network small size. Thus,
a cell size of 10,000m seems a reasonable upper bound for the
cell size in our dataset. This upper bound can be explained by
considering the distribution of lengths showed in Figure 2d:
short-ranged travels (up to 10km) count for the 60% of the
whole dataset. When increasing the grid size, small travels
tend to be contained within the same cell (self-loop). This
reduces the “power” of a cell of attracting other cells in its
community, since there are less long-ranged trips.

IV. EXPERIMENTS

The communities extracted for each grid resolution are
mapped back to the geography and they are used to compute
thematic maps of the territory. Given a spatial resolution, for
each community we retrieve all the cells associated to its nodes
and we join them in a cluster, i.e. a geometric representation
of the area covered by the community. An example of such
thematic map is presented in Figure 3. Areas corresponding
to different communities are rendered with different colors.
There are holes in the reconstructed map, since these cells do
not contain any travel. The phenomenon is more evident for
smaller resolutions, as many small cells do not contain roads.

A. The Borders
We compare the resulting clusters with the existing ad-

ministrative borders, in particular with the provinces, i.e. an
aggregation of adjacent municipalities whose governance has
the duty for traffic monitoring and planning. The borders of
provinces are drawn with a thick green line in Figure 3(Left).
The emerging communities suggest small variations on the
location of the actual borders. The four provinces of Pisa,
Livorno, Lucca and Massa are aggregated in a single cluster,
since the province of Lucca serves as collector of the mobility
of the other three. Exploring the hierarchical aggregation of
the communities resulting from Infomap (see Figure 3(Right)),
it is evident the role of the central area of the province, where
Lucca is located and where there exists a large vertical cluster
(in blue) connecting the majority of the municipalities of the
region. In fact, the cities of Pisa, Lucca, and Livorno form
the so-called area vasta (i.e. large area), characterized by a
large flow of commuters. Livorno is divided into two parts:
the north part is included to the province of Pisa. A similar
behavior is observed for the cluster containing the provinces
of Firenze, Prato, and Pistoia. These big cities actually form
a large metropolitan area with many commuters moving from
one city to the other. The mobility is sustained a high capacity
highway connecting the south with the north through the node
of Firenze. The provinces of Siena and Arezzo maintain their
own borders. The derived communities follow the borders of
each municipality enforcing the internal role of each city as a
minimum building block for human mobility borders.

Figure 4 shows the evolution of the clusters at different
spatial granularity, namely with size 500m, 1,000m, 2,000m,
5,000m, 10,000m, and 20,000m. The first three snapshots
show a coherent result, where the clusters identified within the
high resolution grid of 500m are preserved in the successive
steps. Starting from a cell size of 5,000m, the smaller clusters



4

 1

 10

 100

 1000

 10000

 100  1000  10000  100000

R
e

la
ti
v
e

 V
a

lu
e

Cell Size

# Nodes
# Edges

Giant Component Size
# Components

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  5000  10000  15000  20000  25000  30000  35000  40000

R
e

la
ti
v
e

 V
a

lu
e

Cell Size

Reciprocity
Average Path Length

Average Degree
Average Node Weight

(b)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000

p
(k

)

k

500
1000
2000
5000

10000
20000
40000

(c)

����

����

����

����

����

����

����

��

�� ��� ���� �����

�
��
��
��

�
�

�
�
�����

(d)

Fig. 2: Some statistics of the dataset: (a) number of nodes, edges and connected components, and giant component size; (b)
reciprocity, average path length, degree and node weight; (c) the degree distributions for the networks generated with different
cell sizes; (d) Cumulative distribution of trajectory lengths..

Fig. 3: (Left) The clusters obtained with grid cell size of
2000m. (Right) The clusters determined by the level 2 of the
Infomap hierarchy for the same grid resolution.

disappear, e.g. the cluster between Siena and Grosseto, in
red. When the spatial resolution became more and more
coarse, we observe also a merging of distinct clusters in the
same communities. In the clusters of resolution 5,000m, for
instance, the cluster of Siena is merged with the cluster formed
by Firenze, Prato, and Pistoia. In the other two successive steps
the same phenomenon is repeated. At a resolution of 10,000m
the cluster of Firenze is merged with the cluster of Pisa and
Lucca. In the coarser version of the grid the resulting clustering
actually contains all the grid cells in the same cluster.

From a qualitative evaluation of the resulting maps, we can
infer an optimal grid cell size threshold of 5,000m: smaller
granularities allow the identification of reasonable borders
at the cost of a more complex computation and with the
proliferation of very small local clusters.

B. Community Quality
Beside a visual comparison with the provinces, we ana-

lytically compared the partition derived by the community
discovery approach and the partition determined by the actual
administrative organization by means of two measures, namely
precision and recall, largely used in information retrieval.
Given two sets of objects, say C1 and C2, precision and
recall are given by the formulas; R(C1, C2) = |C1∩C2|

|C1| ,

P(C1, C2) =
|C1∩C2|

|C2| . The recall measures how many of the
objects in C1 are present in C2, while the precision measures
the proportion of the object of C1 in the cluster C2. The recall
of the set C1 tends to one when all the elements of C1 are
present in C2, it tends to zero otherwise. The precision of
a cluster C1 tends to zero when the proportion of elements
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Fig. 5: (Left) The measures of precision and recall compared
with the division of the territory into provinces; (Right) the
adjusted codelength values of the extracted networks.

of C1 is small with respect to the number of element in
C2, and it tends to one when the cluster C2 contains only
elements in C1. In our setting, for each grid resolution we
compare the sets of cells determined by the Infomap algorithm
and the set of cells determined by the administrative borders.
The administrative borders are represented by the set of grid
cells whose cenrtoid is contained within the border interior
(we use the centroid of the cell to avoid duplicated cells
in different clusters). The measures expressed at the cluster
level are extended to the global territory by means of the
following procedure. Let denote with C1 the set of clusters
determined by Infomap, and with C2 the clusters discovered
by Infomap. First, for each cluster Ci in C1 we determine
a cluster C ′

j = map(Ci) ∈ C2, such that C ′
j maximize the

intersection with Ci among all the clusters in C2. Then, for
each pair (Ci,map(Ci)) we determine precision and recall
values. The overall similarity indexes is given by the weighted
mean of each pair: P (C1, C2) =

∑
Ci∈C1

|Ci|P (Ci,map(Ci)),
R(C1, C2) =

∑
Ci∈C1

|Ci|R(Ci,map(Ci)).
The resulting values for precision and recall are plotted

in Figure 5 (left). The plot supports the observation made
by means of the visual comparison of the clusters. Recall
performs better for smaller grid size, namely up to 2,000m
grid size, it decreases for values between 2,000m and 7,000m,
and it has a drop for larger cell sizes. These results confirm
and explain the clusters presented in Figure 4.

F-Measure is not the only evaluation test we can perform.
Infomap calculates also the code length needed to codify the
network given the community partition. Lower code lengths
are better because they are the results of a better division in
communities. Of course, the simple value of the code length
is meaningless in our case, as the networks have very different
scales (the number of nodes goes from 335k to 194 and the
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Fig. 4: The resulting clusters obtained with different spatial granularities.

number of edges from 4M to 9k). Instead, we can adjust the
code length with the number of nodes, as it is an information
referred to how many bits are needed to represent all the nodes

in the network. We adjust the code length as CLadj =
CL

log2 n
,

where n is the number of nodes in the network. The log2 n
term returns the number of symbols (bits) needed to code each
node of the network taken separately, i.e. using a uniform code,
in which all code words are of equal length. Since CL is the
code length returned by Infomap, i.e. the number of symbols
needed to code each node of the network given the community
partition (that tries to exploit community information to use
shorter code words), their ratio is telling us how CL improves
over the baseline. If CLadj ≥ 1, then the community division
is using the same number of symbols (or more) than the ones
needed without the community, otherwise the compression is
effective, and the lower value the better partition; therefore,
CLadj is scale independent.

The resulting plot of the CLadj for all the networks
generated is depicted in Figure 5 (right). As we can see,
the adjusted code length decreases while approaching a cell
size in the interval 5-10,000m, that is our minimum, and
then increases again. At cell size 8,000m, the adjusted code
length is slightly lower than 0.53, intuitively it means that
the obtained code length is long as 53% of the baseline. This
confirms the topology analysis of the networks performed in
Section III, that identified the most promising cell sizes at
values smaller than 10,000m. Moreover, the comparison of
the plots in Figure 5 right and left show that the communities
discovered for grid sizes up to 2,000m have comparable results
at the cost of a complexity that decreases when the cell grid
size increases. Beyond the grid size limit of 7-10,000m the
spatial grid is no more able to capture local mobility behavior
and the corresponding communities start getting worse.

V. CONCLUSION

In this paper we explore the influence of spatial gen-
eralization for the analysis of complex networks extracted
from mobility data. We considered a large dataset of GPS
trajectories, with a very precise spatial resolution, to derive
a set of multi-resolution spatial grids. Each grid generates
a mobility complex network where the nodes represent the
cells of the grid and the edges represent the travels connecting
the two cells. We studied several network statistics over the
extracted networks and we applied a community discovery
algorithm to derive the actual borders of human mobility. The
extensive experiments show that the choice of the appropriate

spatial resolution of the grid is critical for the generaliza-
tion of mobility data. Finer resolutions create over detailed
networks where smaller components are associate to several
small clusters. Large cell sizes, on the contrary, generate
an excessive aggregation of local movements. The optimal
tradeoff is found within an interval of 2-7000m for grid cell
size. This resolution allow the correct generalization of local
trips, that represent the majority of human mobility, and the
reduction of model complexity of the extracted communities,
which yield a compact code representation.
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