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ABSTRACT
Starting from a bipartite classification network of objects and 
classification criteria – in our case taken from Archäologische 
Bibliographie 1956-2007 [14] – we present a way to explore 
the ecology of classification co-occurrence. Enabling meso-
level exploration, we construct and enrich a weighted network 
of classification co-occurrence with a useful lift-significance 
measure, based on learned association rules. Enabling global-level  
exploration, we use hierarchical link clustering HLC to extract 
sense-making communities from the co-occurrence network, taking 
into account that classifications can belong to multiple communities, 
resulting in a community overlap network. Finally, visualizing 
and exploring the results including evolution in time, we offer 
important insights regarding the structure of classical archaeology 
as a discipline, while making an interesting case for applying our 
technique to similar datasets covering other disciplines. 

Categories and Subject Descriptors
E.1 [Data]: Data Structures - Graphs and networks; I.5.2 
[Computing Methodologies]: Design Methodology - Pattern 
analysis; I.2.6 [Computing Methodologies]: Learning; J.5 
[Computer Applications]  - Arts and Humanities

General Terms
measurement, human factors

Keywords
archaeology, bibliography, subject classification, complex 
networks, co-occurrence, hierarchical link clustering, community 
overlap, association rules 

1.	 INTRODUCTION
As citation indices are of limited use and literature is still not 

fully available in digital form, classical archaeology or the arts 
and humanities in general still rely more on traditional subject 
classificaton as other fields do. A major pain point in exploring the 
respective classified literature is that scholars are usually limited to 
relatively simple user interfaces, where they can search or query 

for simple lists of literature associated to sets of classifications, or 
hop back and forth between classifications and publications while 
browsing the results. In the meantime the complex ecology of 
classification criteria related to each other remains opaque.

Combining complex network analysis and data mining 
techniques in this paper, we offer a solution to this problem, enabling 
the exploration of a subject classification system, both on a meso- 
as well as on a global level, as shown in figure 1. Beyond standard 
user interface functionality, we are able to create a browsable set 
of visualizations, with which the interested scholar can explore 
neighboring sub-fields as well as the structure of the discipline as 
a whole, in a way that is more up to date and contextually superior 
to any written text book, as the big picture emerges algorithmically 
from an abundance of data that is accumulated by many actors.

 As our example we use Archäoologische Bibliographie, i.e.  
a bibliographic database that collects and classifies literature in 
classical archaeology since 1956 [14]. Analyzing the state of 2007, 
our source data includes about 370.000 classified publications 
by circa 88.000 authors that are connected to about 45.000 
classification criteria, via 670.000 classification links. Figure 2 
shows a data model sketch of the database, including two additional 
link types which we construct within our analysis. First we generate 
and analyze a classification co-occurrence network from the 
classification link between publications and classification criteria. 
Second we abstract further by shortcutting from classifications to 
persons, resulting in an alternative perspective on classification co-
occurrence in authors.

local level

meso level

global level

We Can Now Explore the Complex System of Subject Themes in Classical Archaeology ...
from the most granular via the meso to the global, which is great as ...

Complex Overlap is Everywhere ...

Figure 1: This paper enables meso- and global-level 
exploration of subject classification beyond the standard user 

interface of common bibliographies, improving over [13].* 



That our problem is not trivial becomes evident by looking 
at the density of the classification co-occurrence network across 
publications. Its giant connected component includes about 29.000 
classification criteria and over 200.000 co-occurrence links, with 
an average diameter of 2.7. Simple node-link diagrams of co-
occurrence therefore are of limited use on a meso-level, resulting 
in a totally useless hairball on the global level [13].

The paper is organized as follows: Section 2 indicates previous 
work. Section 3 details our analytical framework. Sections 4 and 5  
present exemplary global as well as meso-level results respectively. 
Section 6 concludes the paper.

2.	 PREVIOUS WORK
This paper builds on previous work [13], in which Schich 

et al. focus on both the system of classification criteria and the 
bipartite network of publication–classification in Archäologische 
Bibliographie. Already discussing thematic subdivisions in the so-
called tree of subject headings, classification occurrence frequency, 
co-occurrence, and persistence in literature, they bring evidence 
for abundant heterogeneity in the system resulting in fat-tail 
distributions spanning five to six orders of magnitude (see figure 
2 in the upper left) – in fact legitimizing our perspective using 
approaches taken from the science of complex networks. 

In particular our paper makes use of a method [2] taken 
from the area of network community finding [8, 11], combining 
it with a method for filtering dense networks in an intelligent way 
[3]. Regarding the area of data mining and learning, our paper 
furthermore makes use of an established technique extracting 
association rules [1, 9] in order to produce a sense-making lift-
significance-weight in addition to regular co-occurrence. As an 
alternative to association rules one could also apply a weighting 
scheme such as TF-IDF [12], which we have avoided as larger 
background corpuses would have been hard to apply in our case, 
with classification criteria not being single ngrams, but branches 
of in part multilingual phrases within the strong tree of subject 
headings, where the very same term, such as a country name, can 
appear in multiple places within the hierarchy. 

For visualization we made use of Cytoscape [15].

3. 	 METHOD
In terms of method this paper centers on the pipline depicted 

in Figure 3. Starting from a given source dataset, that is a bi-
partite classification network, it includes (a) a one-mode projection 
from object–classification to classification co-occurrence, (b) the 
creation and visualization of rule-mined directed lift-significance 
link weights in addition to regular co-occurrence weights, and 
(c) the creation and visualization of a link community network, 
using Vespignani-filtering and Hierarchical Link Clustering HLC. 
In our paper we use the full pipeline in Figure 3 on five source 
dataset snapshots as derived from Archäologische Bibliographie, 
cumulating from 1956 to each full decade until 2007. We do this 
for both, classification co-occurrence in publications as well as 
classification co-occurrence in authors – summing up to ten source 
dataset snapshots in total. In addition to the main pipeline in Figure 
3, we run an era-discovery algorithm on the full publication dataset 
from 1956-2007, verifying our arbitrary decision to cumulate 
decade by decade. Finally we also connect communities resulting 
from the pipeline in Figure 3c across decades. In a more formal way 
the problem we solve with this pipeline can be defined as follows:

DEFINITIONS – Given a bipartite classification network of 
objects and classification criteria, (1) while aiming for meso-level 
exploration, construct a weighted network of classification co-
occurrence, enriching it with a useful significance measure, which 
is mined using information inherent in the source network itself, 
and (2) while aiming for global-level exploration, algorithmically 
extract sense making communities from the constructed classification 
co-occurrence network, taking into account that classifications can 
belong to multiple communities, resulting in a community overlap 
network. Finally, given multiple snapshots of the co-occurrence  
network in time, (3) connect their respective community overlap 
network, enabling the exploration of their evolution in time.

In formal terms, our analysis starts with a set of objects O – i.e. 
in our case a set of publications or authors – and a set of associated 
classification criteria C. Elements c ϵ C are related to objects o ϵ 
O in a many-to-many fashion, meaning each classification can refer 
to many objects, while each object is potentially connected to many 
classifications. Both sets of classifications and objects grow over 
time. Therefore, we model our problem in the form of an evolving 
unweighted bipartite graph G = {O, C, S, E, T}, where (a) each 
classification c may belong to a particular classification superclass 
s ϵ S, representing the axiomatically discrete dimensions of 
Location, Person, Event, Period, or more general Subject Themes; 
(b) E is a set of triples (o, c, y), with y signifying a point in time at 
which the relationship between c and o has been created; (c) T is 
the set (c, s) which maps each classification c to its one and only 
one corresponding supertype s.

It is worthwhile noting that we apply our method to a single 
data source, while the problem definition given above is general, 
meaning it can also be applied to any other system that can be 
interpreted as a bipartite network of objects and classification 
criteria. Furthermore, losing only one degree of freedom, it is 
not mandatory that the system grows over time or supertypes are 
assigned to classifications.

Below the method is explained in more detail. Following data 
preparation (Section 3.1) we split our main analysis pipeline in two: 
Part one finds overlapping communities of classifications (Section 
3.2), resulting in a global level abstraction of our system; Part two 
enriches co-occurrence with a directed lift-significance weight 
(Section 3.3), refining meso-level exploration. We conclude with the 
optional era-finding and snapshot connection (Section 3.5 & 3.6).

Figure 2: Data model sketch for Archäologische Bibliographie, 
including the fat-tail distribtion for classification co-occurrence 

in publications (upper left, see [13] for detail), and an 
indication of dataset growth from 1956 to 2011 (upper right).*

Archäologische Bibliographie Projekt Dyabola fork 1956-2007*
 

0

100000

200000

300000

400000

500000

600000

1956 1966 1976 1986 1996 2006

# 
Ti

tle
s

Year

 * Martina Schwarz et al. 1956-2011 München: Biering & Brinkmann, Update February 2008. http://www.dyabola.de

cla
ss

ific
at

io
n

cla
ss

_i
nc

lu
de

pa
rt_

of

pa
rt_

of

editor

pa
rt_

of

editor

author

editor

editor

pa
rt_

of

classification

alia
s

Compound
Reference Volume

Journal

Person

Title

Series

Class author classification short cut

co
-oc

cu
rre

nc
e

Archäologische Bibliographie Projekt Dyabola fork 1956-2007*
 

0

100000

200000

300000

400000

500000

600000

1956 1966 1976 1986 1996 2006

# 
Ti

tle
s

Year

 * Martina Schwarz et al. 1956-2011 München: Biering & Brinkmann, Update February 2008. http://www.dyabola.de

cla
ss

ific
at

io
n

cla
ss

_i
nc

lu
de

pa
rt_

of

pa
rt_

of

editor

pa
rt_

of

editor

author

editor

editor

pa
rt_

of

classification

alia
s

Compound
Reference Volume

Journal

Person

Title

Series

Class author classification short cut

co
-oc

cu
rre

nc
e
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3.1	 Data Preparation
Regarding data preparation we follow the pipeline in figure 

3a, starting from a bipartite classification network extracted from a 
source database, as formalized above. 

For the meso-level pipeline (Section 3.3) we transform the 
edgeset E into a transaction dataset where each line takes the form 
(o; y; c1; c2; ...cn). In other words, each object o is handled 
as a transaction in a transactional dataset containing the list of its 
classifications as items, resulting in a list of adjecency lists for all 
o ϵ O.

For the final visualization in the meso-level pipeline and the 
global level pipeline (Sections 3.2 & 3.3) we project our bipartite 
or two-mode classification network to a one-mode network of 
classification co-occurrence. Projecting to the set of classifications 
C, here results in a weighted undirected graph G’={C;E’}, where 
E’ is a set of triples (c1; c2; w) and w is the number of objects 
attached to both c1 and c2 in the original bipartite graph G.

As we are interested in co-occurrence evolution, but our 
implemented pipelines are not defined for evolving data, we filter 
our source data, producing a number of temporal snapshots, that 
cumulate from the beginning of the source dataset to a selected 
point in time. More formally, for each snapshot d ϵ D a subgraph 
Gs = {O;C;Es} will be created, in which all (c; o; y) ϵ Es will 
respect the condition y ≤ d. For d we arbitrarily choose cumulating 
to each full decade of our example dataset, while we also address 
finding optimal sets of d (in Section 3.4), and connecting multiple 
d (in Section 3.5).

3.2	 Finding Overlapping Communities 
For global level exploration we follow the pipeline in figure 

3c, where we aim to provide a big picture that exposes overlapping 
community structure as expected to be inherent in the network 
of classification co-occurrence. Not enforcing classifications to 
belong to a single community we eventually want to build and 
visualize a community network, where links signify at least one 
shared classification. 

Starting from the weighted one-mode projection of our 
bi-partite classification graph (Section 3.1) we want to apply an 
overlapping community discovery technique [7, 11] – Before we 
do so however, we have to deal with the extreme density of our 
one-mode projection, which is expected especially for bipartite 
classification graphs, caused by hubby objects and authoritative 
classification criteria. In order to get around this problem, we apply 
a statistical filter. Instead of a simple threshold on the edge weights, 
we apply a sophisticated network backbone extraction technique 
[3], that takes into account that in weighted networks many nodes 
have only low-weight connections, causing them to disappear in a 
naive threshold filtering. Instead of deleting all edges with a weight 
less than a particular value and consequently many nodes, network 
backbone extraction in ideal cases preserves 90% of the nodes while 
reducing the number of edges to 50% or lower (cf. Figure 4). To do 
so, for each edge (i; j) the weight is recomputed – two times for both 
nodes it is attached to – according to the following formula: 

1. METHOD
In this Section we will formally define the problem we are

dealing with in this paper. We will then provide a detailed
explanation of our analysis pipeline, i.e. the workflow we
implemented in order to solve the problem.
Formally, we are given a set of objects O, which in our

case represents a set of publications, and a set of classi-
fications C. Each element c ∈ C is related to an object
o ∈ O in a many-to-many fashion: one classification refers
to many objects and an object is attached to many classi-
fications. Each c may belong to a particular “classification
type” ct ∈ T . Also, classifications and objects evolve over
time. Therefore, our problem is modeled with an evolving
unweighted bipartite graph G = {O, C, T , E, T}, where E is
a set of triples (c, o, t), t is the snapshot in which the rela-
tionship between c and o has been created and T is the set
(c, ct) which maps each classification c on its corresponding
type ct (each classification may correspond to one and only
one type). The evolution is modeled in a cumulative fash-
ion, i.e. all subsequent snapshots of the graph inherit the
relationships established in the previous snapshots.
Informally, what we want to do is to exploit the knowledge

hidden in the overlap of co-classification, i.e. to analyze the
complex structure created by the usage of multiple classifi-
cation criteria over the same object. This leads us to our
problem definition, formalized as following:

Definition 1 (Problem Definition). Given an evolv-
ing unweighted bipartite graph, find overlapping groups of
source nodes densely connected to the same targets and char-
acterize them according to their meta-information and their
evolution over time.

It is worthwhile noting that, even if in this paper we will
apply our method on only one bipartite classification net-
work, the problem definition given in this Section is general.
This means that it may be applied on any classification sys-
tem representable with a bipartite network of objects and
classifications. Also, it is not mandatory that the classifi-
cations are recorded over time or classified into types: if
the system does not provide these information our problem
definition can still be applied and only loses one degree of
freedom in the analysis.
Given our problem definition, we are able to distinct two

main analysis pipelines: the first one has to deal with the
analysis of groups of co-classifications, the second one is
needed to characterize them. We refer to these two pipelines
as Global (Section 1.2) and Meso (Section 1.3) level analysis
respectively. There are three additional operations needed
to complete our solution to the problem definition here given:
a data preparation operation in order to feed both analysis
pipelines (Section 1.1), a criterion to extract period snap-
shots from a continuous evolving scenario (Section 1.4) and
a procedure to reconnect the overlapping groups discovered
in different snapshots (Section 1.5).

1.1 Data Preparation
In order to start the two main analysis pipelines, the un-

weighted bipartite graph has to be transformed. Two dif-
ferent transformations have to be performed: data selection
and data projection.
Data selection is needed because the implemented pipelines

are not defined on evolving data. Thus, it is necessary to

select data in order to create the different network snap-
shots for the temporal analysis. More formally, given a de-
sired set of snapshots S, for each snapshot s ∈ S a sub
Gs = {O, C, Es} will be created, in which all (c, o, t) ∈ Es

will respect the condition t ≤ s. In Section 1.4 we will
present an algorithmic criterion to extract the best S [3].
Further, in Section 1.5 we will describe a technique meant
to match the results from one snapshot s to another [6].
Data projection is needed for the Global level analysis

presented in Section 1.2, because in this pipeline we will need
a one-mode network, but our input data is a bipartite graph.
The projection operation is the very basic and standard one-
mode projection of a two-mode network. In particular, we
want to project over the set of classifications C, resulting
in a weighted undirected graph G = {C, E}, where E is
a set of triples (c1, c2, w) and w is the number of objects
attached to both c1 and c2 in the original bipartite graph
G. For the pipeline presented in Section 1.3 we do not need
to project G. Data projection pipeline is depicted in Figure
XX, section a.

1.2 Link Clustering
Aim of the Global level analysis is to provide a big picture

of the complex overlap among all the classification nodes C,
also according to their types. In order to do so, we want
to find communities of classifications used frequently on the
same objects O. We also do not want to force classifications
to belong to a single community. Finally, we want to build
and visualize the network of these communities, connected
if they share at least one classification. The general pipeline
is depicted in Figure XX, section b.
Starting from the weighted one-mode projection of the bi-

partite classification graph (see Section 1.1) we want to ap-
ply an overlapping community discovery technique [7]. Be-
fore applying the community discovery step, it is needed
to point out that often one-mode projections of bipartite
graphs, especially classification graphs, are extremely dense:
this is caused by objects which have a lot of classifications
attached and very popular and general classifications which
are attached to almost all objects.
In order to get around this problem, we apply a statisti-

cal filter of the weighted graph edges. Instead of a simple
threshold on edge weights, we apply a sophisticated network
backbone extraction technique [11]. In weighted networks
many nodes may be part only of low-weighted relationships,
causing them to disappear if a naive threshold filtering pro-
cedure is applied (i.e. deleting all edges with a weight less
than a particular value). With the network backbone extrac-
tion it is possible to preserve 90% of the nodes by reducing
the number of edges to 50% or lower (see for example Fig-
ure XX in which we report the relative number of nodes and
edges per different values of the network backbone thresh-
old). In this case, in fact, all the most important connections
for each node are preserved even if they are low weighted in
general.
Basically, for each edge (i, j) the weight is recomputed

(two times for both the nodes to which it is attached) ac-
cording to the following formula:

αij = 1− (k − 1)

 pij

0

(1− x)k−2 dx

where k is the degree of i (or j), and pij is the normalized
weight of the edge, according to the total weight of node i

processing
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Figure 3: Data preparation, analysis, and visualization pipline as described in points 3.1 to 3.3, including (a) the one-mode 
projection from publication–classification or author–classification to classification co-occurrence, (b) the creation and visualization 

of rule-mined directed lift significance link weights in addition to regular co-occurrence weights, and (c) the creation and 
visualization of the overlapping community network, using Vespignani-filtering and Hierarchical Link Clustering.



where k is the degree of i (or j), and pij is the normalized 
weight of the edge, according to the total weight of node i (or j). 
Those edges for which aij ≤ a, i.e. which pass the significance test 
according to the threshold, are preserved in the network. 

From the filtered co-occurrence network we can now extract 
communities. A recent approach to obtain an overlapping graph 
partition is to perform the community discovery on the edges 
instead of the nodes themselves [2,5]. From the given options 
we chose to apply Hierarchical Link Clustering HLC [2] as this 
method turned out to produce the most useful results. HLC first 
uncovers the hierarchical structure of the link communities in a 
complex network, where communities composed of a single link 
are recursively merged until the network itself composes one 
giant community. Meaningful communities are then extracted, by 
cutting the community dendrogram. Deciding for a meaningful cut, 
modularity [10] is widely used to evaluate the quality of a partition.
However as this is not well defined when including overlap, plus 
some other drawbacks (such as the resolution limit [8]), we follow 
[2] evaluating the quality of each partition using the partition 
density D score, which is (given a partition p returning a set of link 
communities LC): 

D(p) =
2

|E|


lc∈LC

|E
lc|

|E(lc)| − (|C(lc)| − 1)

(|C(lc)| − 2)(|C(lc)| − 1)

where |E’| is the total number of edges in the network, 
and |C(lc)| and mlc are the numbers of nodes and edges in lc 
respectively. The higher D(p), the better the partition p identifies 
well divided clusters in the network. 

Figure 5 reports the evolution of partition density for all 
possible dendrogram cuts in our co-occurrence network in 
publications for each decade (i.e. our snapshots d ϵ D). For each 
decade, choosing the given optimal partition p, we now obtain a set 
of overlapping communities LC, allowing us to produce the desired 
global level picture of our classification network. In order to do 
so, we collapse each lc ϵ LC into a single node, connecting the 
nodes of this network with links, whose weight is proportional to 
the number of nodes shared by the two communities. As each node 
and edge has a complex internal structure derived from the weight 
of the classification supertypes of all c ϵ lc, we can further enrich 
both nodes and edges in the visualizaton of the resulting community 
overlap network, by representing the nodes with pie diagrams and 

splitting the edges according to the inherent superclass frequency.
As the community overlap network is again very dense, and 

we aim for a text-book-style global picture we apply the backbone 
filter again [3].

3.3	 Lift Significance
For meso-level exploration we follow the pipeline in figure 

3b. Here we aim to visualize our simple weighted co-occurrence 
network of classifications c ϵ C with a more sophisticated directed 
significance measure. In order to do so, we perform association rule 
mining [1] over our transaction dataset (as introduced in Section 
3.1), mining for frequent rules of co-classifications. Minimum 
support and confidence thresholds may be tuned depending on the 
phenomenon one is interested to highlight. 

As a result we obtain a set R of rules in the form P(C) => 
c, where P(C) ϵ P≥1(C), and P≥1(C) is the power set of C, i.e. 
the set of all subsets of C, excluding Ø. Using this result, we are 
able to build our significance network in which the nodes are the 
classifications C, and the edges are triples (c1; c2; w(c1; c2)), 
where w(c1; c2), i.e. the significance of the relationship between 
c1 and c2 is defined as follows: 

(or j). Those edges for which αij ≤ α, i.e. which pass the
significance test according to the significance threshold α,
are preserved in the network.
We can now extract our communities from the filtered

network. A very popular approach in order to obtain an
overlapping partition of a graph is to perform the commu-
nity discovery not on the nodes of the network, but on the
edges [5]. We chose to apply the Hierarchical Link Clustering
[2] because with this approach it is possible to uncover the
hierarchical structure of the link communities in a complex
network. In particular, we start from communities composed
by a single link. These communities are recursively merged
until the network itself is composed of a single giant commu-
nity. To find meaningful communities rather than just the
hierarchical organization pattern of communities, it is cru-
cial to know where to partition the dendrogram. Modularity
[9] is widely used for the purpose of evaluating the quality
of a partition, but it is not well defined in the overlapping
setting, plus it has some other drawbacks (such as the reso-
lution limit [8]). Therefore, the quality of each partition is
evaluated according to the partition density D score, which
is (given a partition p returning a set of link communities
C):

D(p) =
2

m


lc∈C

mlc
mlc − (nlc − 1)

(nlc − 2)(nlc − 1)

where m is the total number of edges in the network, and
nlc and mlc are respectively the number of nodes and edges
in lc. The higher D(p), the better the partition p identifies
well divided clusters in the network. We report the evolution
of the partition density for all possible dendrogram cuts in
our network for each decade (which are our snapshots s ∈ S).
Now, given the optimal partition p, we obtain a set of

overlapping communities C. We are now able to produce
the Global level picture of our classification network. In
order to do so, we collapse each lc ∈ C into a single node
and we connect the nodes of this network with a link, whose
weight is proportional to the number of nodes shared by the
two communities. It is important to note that each node
has a complex internal structure derived by the weight of
the classification types of all c ∈ lc. Also, the links inside
this network have different type according to the type of
the nodes shared by the communities. Thus, the structure
produced at the Global level is a multidimensional network
with heterogeneous nodes. For the literature about what is a
multidimensional network and how to perform basic analysis
on this particular structure we refer to [4].
In Section XX we will present an example of multidimen-

sional network with heterogeneous nodes along with a deep
analysis of the knowledge we can extract from this structure.

1.3 Lift Significance
Aim of the Meso-level analysis is to provide a browsable

network of classifications c ∈ C which truly reflects signif-
icant co-classifications attached to our objects. Previous
works [10] used the simple one-mode projection of the bi-
partite classification graphs: in this case the significance is
simply the number of times two classifications are used to-
gether.
In this pipeline (depicted in Figure XX, section c) we im-

plement a procedure to get a more sophisticated definition
of significance. In order to do so, we do not project the bi-
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partite classification graph, but we perform the association
rule mining [1] over the adjacency lists of all objects present
in O. In other words, each object o is a transaction in a
transactional dataset containing the list of its classifications
as items. We then mine frequent rules of co-classifications.
The minimum support and minimum confidence thresholds
may be tuned depending on the phenomenon one is inter-
ested in highlighting.
We now have a set R of rules in the form P (C) ⇒ c,

where P (C) ∈ P≥1(C) and P≥1(C) is the power set of C (the
set of all subset of C), excluding ∅. We are now able to
build our significance network in which the nodes are the
classifications C, and the edges are triples (c1, c2, w(c1, c2)),
where w(c1, c2) (the significance of the relationship between
c1 and c2) is defined as follows:

w(c1, c2) =


∀r∈R.c1∈P (C)∧c=c2

supp(P (C) ∪ c)

supp(P (C))× supp(c)

where P (C) is the set of classifications in the left side of the
rule r, c is the classification in the right side of the rule r and
supp(x) is the support of the set x of classifications inside
the transactional dataset. In other words w is the sum of the
lift of all rules involving c1 as one of the antecedents of the
rule and c2 is the consequence. Lift measure is not directed,
but since we are filtering rules according to their confidence,
which is directed, then w(c1, c2) = w(c2, c1), therefore the
network is directed. This means that it may (and it does)
occur a situation in which c1 is very significant referring to
c2, but c2 is not significant referring to c1. We will analyze
these insights in Section XX.

where P(C) is the set of classifications in the left side of rule 
r, c is the classification in the right side of the rule r, and supp(x) 
is the support of the set x of classifications inside the transactional 
dataset. In other words, w is the sum of the lift of all rules involving 
c1 as one of the antecedents of the rule, and c2 is the consequence. 
The lift measure as such is not directed, but since we are filtering 
rules according to their confidence, which is directed, it follows 
that w(c1; c2) ≠ w(c2; c1), resulting in a directed network. 
This means a situation may (and does) occur, in which c1 is very 
significant in pointing to c2, while c2 is not so significant in 
pointing to c1 (see Section 5.1). 

3.4	 Era Discovery
Neither the global- nor meso-level pipelines above take 

into account time. To study evolution therefore, it is necessary to 
discretize the evolving source network into temporal snapshots on 
which the pipelines can be applied separately – raising the question, 
how to choose the right snapshot size?

(or j). Those edges for which αij ≤ α, i.e. which pass the
significance test according to the significance threshold α,
are preserved in the network.
We can now extract our communities from the filtered

network. A very popular approach in order to obtain an
overlapping partition of a graph is to perform the commu-
nity discovery not on the nodes of the network, but on the
edges [5]. We chose to apply the Hierarchical Link Clustering
[2] because with this approach it is possible to uncover the
hierarchical structure of the link communities in a complex
network. In particular, we start from communities composed
by a single link. These communities are recursively merged
until the network itself is composed of a single giant commu-
nity. To find meaningful communities rather than just the
hierarchical organization pattern of communities, it is cru-
cial to know where to partition the dendrogram. Modularity
[9] is widely used for the purpose of evaluating the quality
of a partition, but it is not well defined in the overlapping
setting, plus it has some other drawbacks (such as the reso-
lution limit [8]). Therefore, the quality of each partition is
evaluated according to the partition density D score, which
is (given a partition p returning a set of link communities
C):

D(p) =
2
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
lc∈C

mlc
mlc − (nlc − 1)

(nlc − 2)(nlc − 1)

where m is the total number of edges in the network, and
nlc and mlc are respectively the number of nodes and edges
in lc. The higher D(p), the better the partition p identifies
well divided clusters in the network. We report the evolution
of the partition density for all possible dendrogram cuts in
our network for each decade (which are our snapshots s ∈ S).
Now, given the optimal partition p, we obtain a set of

overlapping communities C. We are now able to produce
the Global level picture of our classification network. In
order to do so, we collapse each lc ∈ C into a single node
and we connect the nodes of this network with a link, whose
weight is proportional to the number of nodes shared by the
two communities. It is important to note that each node
has a complex internal structure derived by the weight of
the classification types of all c ∈ lc. Also, the links inside
this network have different type according to the type of
the nodes shared by the communities. Thus, the structure
produced at the Global level is a multidimensional network
with heterogeneous nodes. For the literature about what is a
multidimensional network and how to perform basic analysis
on this particular structure we refer to [4].
In Section XX we will present an example of multidimen-

sional network with heterogeneous nodes along with a deep
analysis of the knowledge we can extract from this structure.

1.3 Lift Significance
Aim of the Meso-level analysis is to provide a browsable

network of classifications c ∈ C which truly reflects signif-
icant co-classifications attached to our objects. Previous
works [10] used the simple one-mode projection of the bi-
partite classification graphs: in this case the significance is
simply the number of times two classifications are used to-
gether.
In this pipeline (depicted in Figure XX, section c) we im-

plement a procedure to get a more sophisticated definition
of significance. In order to do so, we do not project the bi-
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partite classification graph, but we perform the association
rule mining [1] over the adjacency lists of all objects present
in O. In other words, each object o is a transaction in a
transactional dataset containing the list of its classifications
as items. We then mine frequent rules of co-classifications.
The minimum support and minimum confidence thresholds
may be tuned depending on the phenomenon one is inter-
ested in highlighting.
We now have a set R of rules in the form P (C) ⇒ c,

where P (C) ∈ P≥1(C) and P≥1(C) is the power set of C (the
set of all subset of C), excluding ∅. We are now able to
build our significance network in which the nodes are the
classifications C, and the edges are triples (c1, c2, w(c1, c2)),
where w(c1, c2) (the significance of the relationship between
c1 and c2) is defined as follows:

w(c1, c2) =


∀r∈R.c1∈P (C)∧c=c2

supp(P (C) ∪ c)

supp(P (C))× supp(c)

where P (C) is the set of classifications in the left side of the
rule r, c is the classification in the right side of the rule r and
supp(x) is the support of the set x of classifications inside
the transactional dataset. In other words w is the sum of the
lift of all rules involving c1 as one of the antecedents of the
rule and c2 is the consequence. Lift measure is not directed,
but since we are filtering rules according to their confidence,
which is directed, then w(c1, c2) = w(c2, c1), therefore the
network is directed. This means that it may (and it does)
occur a situation in which c1 is very significant referring to
c2, but c2 is not significant referring to c1. We will analyze
these insights in Section XX.

Figure 4: Relative number of nodes and edges for different 
values of the network backbone filtering [3] for co-occurrence 

in publications 1956-2007. Edges disappear quicker than 
nodes, making the graph sparser, as desired.

Figure 5: HLC partition density values as a function of the 
dendrogram cut threshold for each decade. Higher values 

mean denser partitions, i.e. better community division.
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Looking for eras, i.e. periods of regular and predictable 
network evolution, we apply a method [4] that calculates the 
Jaccard coefficient (on edges and nodes) between all consecutive 
observations of the network, resulting in the ability to define a 
distance measure between groups of observations. In other words, 
given an observation y and the values of the Jaccard coefficient 
in the observations before y–1 (which is J(y–1)) and after y+1 
(which is J(y+1)) the method calculates what value the Jaccard 
coefficient should take if y would be part of a regular era, and given 
its actual value J(y) how far it is actually from there:

dist(y) =
|J(y)− (m× y)− q|

(1 + (m2))

where m = J(y−1)−J(y+1)
y−1−y+1

and q = (−y+1 ×m) + J(y+1).

dist(y) =
|J(y)− (m× y)− q|

(1 + (m2))

where m = J(y−1)−J(y+1)
y−1−y+1

and q = (−y+1 ×m) + J(y+1).

Using this distance measure, computed on all adjacent 
observations, a dendrogram is built, grouping together consecutive 
observations, presenting regular evolution separated from abrupt 
changes in trend. Figure 6 depicts the respective dendrogram for 
classification co-occurrence in publications of Archäologische 
Bibliographie from 1956 to 2007, with our arbitrary decades fitting 
surprisingly nice to the found era structure.

3.5	 Snapshot Connections
Finally, given the fact that our analysis is performed in separate 

pipelines for each decade or snapshot, how can the snapshot 
results be connected? In the meso-level case the solution is trivial: 
All classifications are uniquely identified and can therefore be 
connected across snapshots. For the global level this is not true 
since communities are calculated for each snapshot separately. So, 
given community A in snapshot d and community B in snapshot 
d+1, can we decide if A and B are related or not – i.e. if they are 
equivalent, if B forked from A, or B is a merge of A and C? 

In [6] the authors solve this problem with the concept of 
minimum description length, i.e. by using a data description 
language to produce the shortest data description possible. In our 
case all communities are lists of classifications, where we can 
calculate the relative entropy between any community pair from 
one snapshot to another. The relative entropy takes values from 0 
(where two communities share all classifications) to +1 (where the 
community overlap becomes zero). Calculating the relative entropy 
across snapshots, we can put weighted links from a community in 
snapshot A to one or more communities in the subsequent snapshot 
B. The weight is inversely proportional to the relative entropy. 
Figure 10 below shows an example result.

Figure 6: Era structure dendrogram of classification co-
occurrence in publications of Archäologische Bibliographie 

according to [4]. Eras are colored in the tree, while our 
arbitrary decades are highlighted in the x-axis labels.
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4.	 GLOBAL EXPLORATION
4.1	 Community Overlap

As a result of processing our source data according to the 
pipeline in figure 3c, we can explore the ecology of classifications 
in Archäologische Bibliographie on a global level, i.e. in form of 
an overlapping community network. Nodes in this network, as 
shown in figure 7, represent a number of classifications belonging 
to the respective communities, with the amount of classifications 
indicated by node size. Links between the communities stand for 
the number of classifications that are shared between them. Every 
classification in our system, can therefore potentially be part of 
multiple nodes and links in the community network. That the found 
configuration of communities makes sense, becomes clear while 
zooming into the meso-level structure of our system further below 
in section 5. First however, we take a look at some obvious features 
of the global community network.
Community Overlap Link Type Distribution Author 2007

Figure 7: Detail of a community overlap network, with nodes 
represented as pie diagrams and edges split, indicating the 
inherent frequency of classification supertypes, i.e. subject 

themes, locations, periods, persons and objects.*

4.2	 Overlap Type Distribution
One of the most striking features of the community overlap 

network in figure 7 is that it is NOT a hairball, but a collection 
of tightly connected clusters that are interconnected in a semi-
tight fashion and surrounded by a sparsely connected periphery. 
Using superclass information in order to enrich the visualization, it 
becomes clear where the observed structure is rooted: Every node 
in our community network is depicted as a pie chart indicating 
the presence of classification superclasses in the respective 
community – blue for subject themes, green for locations, pink 
for periods, red for persons and black for objects and monuments. 
Even without knowing the detailed content of our communities it 
becomes immediately clear to the eye, that the superclasses are not 
distributed in a random way, but grouped into genres defining the 
tightly connected clusters.

The situation becomes even more clear if we look at the 
distribution of links split into their superclasses, so that say a 
community link containing three locations and four subject themes 
is split into two lines, i.e. a green line of width three, and a blue line 
of width four. Figure 8 shows all the location, period, and subject 
theme links in isolation for both co-occurrence of classifications 
in authors as well as publications according to the state of 
Archäologische Bibliographie in 2007. We can clearly see that 
subject classifications permeate throughout the whole community 



network, while periods and locations co-govern certain clusters. 
In other words, according to Archäologische Bibliographie, 
publications and – as clusters appear to be tighter and even better 
defned – even more so authors in classical archaeology seem to 
specialize roughly on certain genres, governed by an either spatial, 
temporal, or a more generic conceptual perspective.

Figure 8: Links in the community overlap network 
corresponding to subject themes, locations, and periods are 

distributed in a very different way.*

Community Overlap Link Type Distribution Author 2007

Community Overlap Link Type Distribution Publication 2007

Community Overlap Link Type Distribution Author 2007

Community Overlap Link Type Distribution Publication 2007

Community Overlap Link Type Distribution Author 2007

Community Overlap Link Type Distribution Publication 2007

Community Overlap Link Type Distribution Author 2007

Community Overlap Link Type Distribution Publication 2007

publications 2007

authors 2007

4.3	 Community Network Evolution
Focusing on the evolution of the community overlap network, 

we have applied the data processing pipeline in figure 3c five 
times each, cumulating classification data from 1956 for every 
decade from 1967 to 2007, both for classification co-occurrence 
in publications as well as authors. Keeping our variable threshold 
settings over the decades and using the same simple edge-weighted 
spring-embedded layout [15], we can see in figure 9 that the colored 
cluster structure identified in 4.1 and 4.2, comes into existence in 
the form of a bare skeleton of a few connected communities very 
early on, fleshing out to massive more differentiated proportions 
over the decades. The smooth development seems to legitimate 
our arbitrary decision to split our dataset into five decades. The 
fairly accurate fit of the decades to the algorithmically extracted era 
structure of our data in figure 6 further supports our choice. In sum 
we can say that the picture of community network evolution, or 
in other words classical archaeology according to Archäologische 
Bibliographie as a whole, does not feature large surprises – for e.g. 
in the form of significant phase transitions in node connectivity – 
but seems to grow in a smooth manner. If the smooth development 
reflects the evolution of classical archaeology as a discipline or is 
rooted in the attention towards literature on behalf of the curators 
of Archäologische Bibliographie, remains a subject of further 
investigation. 

4.4	 Community Evolution
Zooming into the evolution of communities themselves, 

according to the algorithm used in 3.5, reveals a more differentiated 
situation in detail. Looking at figure 10 for e.g. we can see two 
communities 27133 and 18874, which over the decade from 1987 
to 1997 merge into a single community 64700, approximately 
averaging the fraction of associated locations, subject themes and 
periods, only to split up into two seperate communities 109017 and 
198594 again by 2007, now concentrating periods and locations 
vs. periods and subject themes respectively – curiosly reflecting 
the often ideosyncratically perceived spat between excavation 
archaeologists and more art historically focused scholars spending 
most of their time in the library.

Overlapping Community Evolution in Detail Publication

Cf. Ferlez Faloutsos Lescovec Mladenic Grobelnik IEEE International Conference on Data Engineering ICDE 2008 

Figure 10: Communities belonging to various temporal 
snapshots are connected using a dedicated algorithm, 

revealing interesting merges and splits over time.

Figure 9: Both classification co-occurrence in publications as 
well as authors evolve over time, fleshing out structure that 

emerges early on in the process.*
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5.	 MESO LEVEL EXPLORATION

5.1	 Co-Occurrence plus Lift-Significance
As a result of the pipeline in figure 3b, we can explore the 

ecology of classifications in Archäologische Bibliographie on a 
meso-level, i.e. in form of a significance weighted co-occurrence 
network. Nodes in this network, as shown in figure 11, are 
the classifications themselves, with node color signifying the 
classification superclass – i.e. subject themes, locations, periods, 
persons, or objects. Node size indicates the amount of literature or 
number of authors associated with the classification. Links connect 
co-occurring classifications. Line width is proportional to a simple 
co-occurrence weight, i.e. the amount of literature or number of 
authors shared by the two connected classifications. The line color 
depth reflects the lift significance measure introduced in 3.3, with 
light grey links carrying low significance vs. darker links being 
highly significant. While line color depth is only a simple sum of 
lift significance in both directions, the respective arrow heads at 
both ends of the line contain information about link symmetry. This 
is interesting, as co-occurrence usually turns out to be symmetrical, 
but sometimes is remarkably directed by nature. 

Figure 11 presents a striking example showing all the properties 
mentioned above. It depicts co-occurrence in the branch Plastic 
Art and Sculpture i.e. a subset of classifications within the tree of 
subject headings in Archäologische Bibliographie. As in previous 
work [13] we threshold the subset, taking only links into account 

that contain at least four publications. Improving over the previous 
version however, we also add highly significant links containing as 
few as a single publication. As a threshold for lift significance we 
use a rule of thumb, taking into account as many significant links 
as highly co-occurent ones, merging the two resulting thresholded 
networks to achieve the final figure.

It is interesting that the networks thresholded by heavy co-
occurrence or high lift significance do not overlap much. In fact, 
when merged as in figure 11 they turn out to complement each 
other: Greek and votive reliefs for example have a very strong 
connection in terms of co-occurrence without high significance, 
which in a sense is trivial, as any archaeologist would know that 
both classifications are highly related. Zeus and Ganymed on the 
other hand share less literature, but nevertheless their connection 
is highly significant and should therefore be part of the picture. 
In fact their relation is also assymetrical, which makes sense as 
Zeus, the father of god and men, makes us think of many aspects, 
while Ganymed in sculpture is mostly depicted with Zeus in the 
form of an eagle. Taken together the networks of heavy occurrence 
and high lift significance result in a kind of cheat sheet for Plastic 
Art and Sculpture, where we can easily see what is often related 
to each other or rare and significant. Similar pictures as in figure 
11 can be produced for any given branch of classifications in the 
tree of subject headings, and also, as we will see below, for more 
sophisticated selections of classification criteria. Before we go into 
detail however, let’s also take a look at network evolution.

Co-Occurrence with Lift-Significance for Plastic Art & Sculpture Publications 2007
CoOcc ≥ 4 OR LiftSig ≥ 0.056

Figure 11: Classification co-occurrence in publications with lift-significance for the branch Plastic Art and Sculpture, i.e. a subset 
of classifications in the tree of subject headings of Archäologische Bibliographie in 2007. The picture, which can be seen as an 

instant cheat sheet for an imaginary archaeology exam, is a simple merge of two versions of the network, thresholded in different 
ways: Heavy co-occurrence links are taken into account if they contain at least 4 publications, equivalent to figure 4 in [13], while 

additional links are included if their lift significance is at least 0.056.*     



5.2	 Co-Occurrence Network Evolution
As on the global level, looking at network evolution also makes 

sense on the meso scale. Besides the obvious growth regarding the 
number of classifications, and as a consequence their respective co-
occurrence links, there is one particular phenomenon striking the 
eye in figure 12, which shows a detail of the network in figure 11 
evolving from 1967 to 2007. As becomes clear over the decades, 
significant links tend to accumulate literature, while loosing 
significance. In other words as the association starts to be taken 
for granted the link line widens and becomes more light in color, 
as we can see for the links between Nike and akroteria, or kouroi 
and korai in figure 12. Of course, as with link symmetry, the effect 
shows interesting exceptions such as the highly significant clique 
of Polyphemos, Skylla, Pasquino Group, and rape of the palladium 
that we can spot on the left side periphery in figure 11. Given the 
spectacular uniqueness of the sculptures in question and the related 
controversial discussion in the literature, it is not a surprise that 
the associated links stayed significant over four decades while 
accumulating more and more literature.

Co-Occurrence Evolution for Plastic Art & Sculpture Publications 1967
CoOcc ≥ 4 OR LiftSig ≥ 0.056 as of 2007

Co-Occurrence Evolution for Plastic Art & Sculpture Publications 1977
CoOcc ≥ 4 OR LiftSig ≥ 0.056 as of 2007

Co-Occurrence Evolution for Plastic Art & Sculpture Publications 1987
CoOcc ≥ 4 OR LiftSig ≥ 0.056 as of 2007

Co-Occurrence Evolution for Plastic Art & Sculpture Publications 1997
CoOcc ≥ 4 OR LiftSig ≥ 0.056 as of 2007

Co-Occurrence with Lift-Significance for Plastic Art & Sculpture Publications 2007
CoOcc ≥ 4 OR LiftSig ≥ 0.056

67 77 87 97 07
Figure 12: Classification co-occurrence evolution clearly 

shows that initially highly significant, i.e. dark links become 
less significant and wider as they accumulate literature.*

5.3	 Mutual Class Self-Definition
Another interesting phenomenon on the meso level is the 

mutual self-definition of classifications across co-occurrence links. 
In previous work [13] we have already mentioned some striking 
examples for Plastic Art and Sculpture regarding this effect. Here 
we present another example that highlights the inherent potential: 
For Figure 13 we chose all classifications in the branch Named 
Portraits (across publications in 2007), thresholding both co-
occurrence ≥ 2 and lift-significance ≥ 0.06 in a minimal way. Again 
the figure, which only shows the largest connected component of 
the result, can be used as a cheat sheet, indicating the relations 
of portraits from Augustus, to Phillippus Arabs at the end of the 
Roman empire, with lift significance highlighting relations between 
strongly connected types such as Caracalla, Septimius Severus 
and Geta. In general terms this means our approach provides easy 
access to highly specialized fields that are hard to explore using 
a regular user interface that browses bibliographic classifications 

on a local level. As similar insights can easily be produced for all 
areas covered by Archäologische Bibliographie, the respective 
visualizations call for being used to complement classic textbook 
introductions to classical archaeology.

5.4	 Ego-Networks vs. Communities
An alternative starting point in exploring the ecology 

of classifications in our system – beyond picking predefined 
branches of the tree of subject headings – is to begin with a single 
classification of interest. Here, a seemingly obvious approach 
would be to draw the ego-network, meaning the network of all 
links between classifications, the classification of interest is related 
to – in equivalence to the widespread basic diagrams of friendships 
between our own friends in popular social network platforms.

Unfortunately the ego-network strategy does not work for our 
co-occurrence network, as the average network diameter is only 
2.7, making it very likely that the result contains an almost fully 
connected clique. An excellent example is the ego-network of 
Paestum – an important and popular archaeological site in Italy. 
Even worse than raw, thresholding has almost no effect on this 
structure: In fact if we threshold heavily for co-occurrence ≥ 25 – 
while lift significance is virtually irrelevant – the picture starts to get 
clearer, but we only isolate what could be called the generic Italian 
core of classical archaeology, where Paestum, even though popular, 
only appears in the very periphery of a large cluster, connected to 
a few even more peripheral events, and the obvious fact that it is 
known for temples.

The solution to the problem of dense ego-networks is to 
harness our global level community overlap network, from which 
we can pick all communities in which Paestum appears. Looking 
into those communities on a meso level it turns out, we can learn 
in a very straight forward way what Paestum is really about. Figure 
14 shows the relevant section of the global community overlap 
network, surrounded with the meso level co-occurrence networks 
for the respective communities. We can see that the community 
size distribution is heterogeneous. Let’s look into some of them: 
Community 6696 already improves over the basic ego-network, as 
it embeds Paestum into the core of classic archaeology including 
relevant classifications that are more than one hop away. The 
smallest communities such as 68054 tell us that Paestum is about 
temple, capitals, planning orders, building construction, similar 
to a couple of strikingly related sites. Community 144461 dates 
Paestum to the Greek period, again as a striking example for 
temples. Community 78265 provides a hint that architectural parts 
from Paestum were reused later in Roman buildings such as the 
Palatine palaces. Community 137152 finally provides a wider 
context of Paestum including tombs, implicitly pointing to literature 
regarding the famous tomb of the diver among others – in sum a 
pretty accurate description of what Paestum is about, accessible in 
an easy way, even to the non-specialist.

6.	 CONCLUSION
Summing up, we have presented a way to explore a complex 

system of subject classification co-occurrence, by combining 
network filtering, community finding and association rule mining. 
As a result we can now explore Archäologische Bibliographie on 
three levels. To the standard local level user interface we have added 
a meso-level network of significance-weighted co-occurrence 
that allows us to explore the regional neighborhood of individual 
(groups of) classifications. Furthermore we also provide a global 
level community overlap network, that allows us to grasp the big 
picture of classical archaeology in an intuitive way.Figure 13: Mutual self-definition of Named Portraits.*
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