Mining the Information Propagation in a Network

Michele Berlingerio, Michele Coscia, Fosca Giannotti

KDD-Lab, ISTI-CNR Pisa
IMT Lucca Institute for Advanced Studies
Department of Computer Science – University of Pisa
Introduction

- Given a network of users that exchange information,
 - How does the information propagate in a network?
 - Why?
 - How fast?

- Focus on
 - Temporal dimension: topics spread faster than others, distribution of temporal intervals
 - Causes of such spread: characteristics of the users and the topics passed on
Problem Definition

- Dataset D of users U with flow of information as set of timestamped sequences S
 - Find frequent patterns of information propagation
 - Let the causes of such patterns emerge from the data
- TAS (Temporally Annotated Sequences) mining plus
- Graph Mining
Analysis steps

1. Building a graph G of users U connected by edges representing topics
2. Assigning labels L to U according to their semantical and statistical properties
3. Assigning labels to the edges
4. Extracting flows of information in D
5. Extracting TAS
6. Extracting frequent subgraphs in G

Goal: combining the analysis of the results in 5 and 6
Case study

Data
- Enron emails: after cleaning, 12,000 emails
- 20 newgroup emails: after cleaning, 18,000 email

Tools
- MiSta software for TAS mining
- Single graph miner
First steps

- Users connected by topics discussed among them
- Users labeled by degree, betweenness, closeness centrality, ..
- Edges labeled by
 - words in the topics manually semantically clustered, then label=most frequent cluster
 - most frequent word
- For the TAS, emails grouped by subject
TAS example
Patterns found

Enron – node labels: CC – edge labels: most frequent topic (semantically clustered)

(a) 5
 / \
 / \
 / \
 4 3
 | |
 | |
 5 5
 | |
 | |
 1 1

(b) 5
 / \
 / \
 / \
 a v
 | |
 | |
 <5 5
 | |
 | |
 x z
 | |
 | |
 5 5

(c) 2
 / \
 / \
 / \
 1 1
 | |
 | |
 2 1

Newsgroup – node labels: CC – edge labels: word frequency

(a) 5
 / \
 / \
 / \
 4 2
 | |
 | |
 5 5
 | |
 | |
 1 1

(b) 5
 / \
 / \
 / \
 2 2
 | |
 | |
 5 5
 | |
 | |
 3 3
Reaction Times

(a) Reaction times - Enron

(b) Reaction Times - Newsgroup

(c) Reaction times - Newsgroup

(d) Graph Patterns Heterogeneity
Conclusions & Future Work

- Extending the case study
- Pushing more semantic on labels
- Comparing different datasets
- Apply the methodology to some real scenario (Viral Marketing, ..)