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Abstract—Online social networks are increasingly being used
as places where communities gather to exchange information,
form opinions, collaborate in response to events. An aspect of
this information exchange is how to determine if a source of
social information can be trusted or not. Data mining literature
addresses this problem. However, if usually employs social bal-
ance theories, by looking at small structures in complex networks
known as triangles. This has proven effective in some cases,
but it under performs in the lack of context information about
the relation and in more complex interactive structures. In this
paper we address the problem of creating a framework for the
trust inference, able to infer the trust/distrust relationships in
those relational environments that cannot be described by using
the classical social balance theory. We do so by decomposing a
trust network in its ego network components and mining on this
ego network set the trust relationships, extending a well known
graph mining algorithm. We test our framework on three public
datasets describing trust relationships in the real world (from the
social media Epinions, Slashdot and Wikipedia) and confronting
our results with the trust inference state of the art, showing better
performances where the social balance theory fails.

I. INTRODUCTION

In the last years, we witnessed the creation and the success
of many web platforms hosting user communities, opinions
and collaboration. Web services, like Epinions, allow their user
to express their judgment about any kind of product. Popular
applications, like collaborative filtering, help retail platforms
in the task of suggesting to their users the products they
may be interested in, because other similar users found them
interesting. Examples of collaborative filtering applications can
be found in Amazon and in the Internet Movie Database.

The social dimension plays a crucial role in these appli-
cations. An information does not have any value per se: it
has value only if we find that its source is reliable and/or
we grant our trust on it. In the Epinions platform users can
flag another user as “trustworthy” or “untrustworthy”, creating
a complex network with directed positive and negative links.
An interesting problem is then how to infer if a new user, with
whom there was no interaction before, can be trusted or not.

Data mining researchers have addressed this problem. In [9]
the authors represent a trust/distrust network with a directed
signed graph, where users u1 and u2 are connected by an edge
(u1, u2,+) if u1 trusts u2; and by an edge (u2, u1,−) if u2
distrusts u1. They use theories of social balance to infer the
sign of any given edge. Social balance states that there are
simple graph structures that are balanced and the unbalanced
structures tend to evolve eventually into them; therefore, given
any edge, its sign is likely to be the one that makes balanced

the structure where it appears. If both u1 and u2 trust u3, then
it is very likely that they also trust each other, as the triangle
with all positive edges is balanced while a triangle with one
negative and two positive edges is unbalanced.

Our idea is to use generic subgraphs, discovered from the
network, instead of triangles, because larger structures capture
more behaviors, going beyond what a triangle can describe.

The authors of [9] do not explore structures more complex
than a triangle (i.e. at most three nodes and six directed edges)
as there is no social balance theory for structures with four or
more nodes. Their results, and the ones presented in [14] with
a more descriptive approach, show that these simple structures
are very effective in some real world complex networks.
Social balance theory works well when we have a classical “I
trust you; you trust me” situation when expressing opinions.
However, it generally performs better when classifying edges
for which we have a lot of contextual information, i.e. where
the two endpoints share many common neighbors. It under-
performs in more complex relationships, as shown in the
network of Wikipedia votes, where a positive link means that a
user is supporting the promotion to moderator of another user,
and a negative link represents an opposition. In this case, being
opposed to the same user does not necessarily entail that we
will support each other, as social balance suggests.

In this paper we address the problem of creating a frame-
work for the trust inference, able to infer the trust/distrust
relationships in those relational environments that cannot be
described by simply using the classical social balance theories
of triangles. We show that slightly extending the notion of
social balance to groups of four or five nodes can greatly
increase the quality of the sign classification.

To do so, we extend a well know algorithm in the graph
mining literature [16] to deal with directed signed networks.
Since we are interested in what happens only in the direct
surroundings of each edge, we decompose the trust network
in its ego network components. We mine the trust relationships
on this ego network transactional dataset. From the patterns
extracted, we create a collection of trust rules, by connecting
two different patterns with the same edges but one, forming an
association rule. The rules with higher support and confidence
are then used as the model for the edge classification.

We test our framework on three public datasets describing
trust relationships in the real world. Following [9] we extracted
trust networks from the social media Epinions, Slashdot and
Wikipedia. We confront our results with the trust inference
state of the art. Our results suggest that the state-of-the-art



prediction is currently the best technique for the simplest
relationship types (Epinions and Slashdot), while the most
complex relational environment (Wikipedia) shows a clear
outperform of our method over the state-of-the-art.

Our contribution can be then summarized as follows. Firstly,
we extend the social balance analysis with empirical evi-
dences, to include structures that are more complex than
simple triangles. Secondly, we create a new trust inference
framework, by extending a known graph mining algorithm as
a further contribution, whose performance are better than the
current trust inference state of the art.

II. RELATED WORK

Our paper is based on signed networks, social balance
theory edge classification and rule-based link prediction.

Signed networks are networks where there are two different
kinds of edges: positive and negative. Works dealing with
signed networks are [9], [14]. In [14] the authors studied the
difference between negative and positive interactions between
users and which characteristics have the networks with positive
or negative connotation, whereas in [15] authors address the
study of the existence of different types of trust and how they
can be used to improve the performance of some tasks.

Many works study the problem of classifying the edge
sign in a social network [9], [6], [11], [4]. The baseline
comparison for our framework is [9]. In [9], Leskovec et al.
study how it is possible to use various topological features of
a social network to classify trust and distrust relations among
users in social networks. The authors use the social balance
theory (evolving the intuition in [5]) and create 16 rules to
classify the sign of an edge, i.e. all the possible subgraphs
of three nodes and from three to six edges, each one with
two possible signs and directions. They estimate the likelihood
of each of these triangles and use the maximum to classify
the edge. The methodology works poorly for nodes without
a high embeddedness (i.e. for edges whose endpoints do not
share many common neighbors), for the subset of edges with
high embeddedness the correct prediction rate is remarkably
high. Guha et al. [6] present a framework of trust propagation
schemes, showing the predicting power of a small number of
expressed trusts/distrusts.

The edge sign prediction problem is related to link predic-
tion [10] and link classification [12]. In [1] an approach based
on extracting graph evolution rules is described. The model
of evolution is learned from the data, by the extraction of
evolution rules, used to predict the evolution of the network.
[1] it is allowed to predict also when the new links will form.
Also [13] addresses the link prediction problem in evolving
and multirelational networks, that can be used to represent
signed relationships. In [7], authors also analyze the frequent
patterns extracted from the network to capture users’ behaviors
and use them to conduct link formation analysis in directed,
temporal social networks. The two works do not consider the
sign of the edge.

III. EDGE SIGN PREDICTION PROBLEM

In this section, we introduce some preliminary notions, then
we present the definition of the edge sign prediction problem;

(a) G1 G2 G3 (b) (c)

Figure 1. Support value of two graphs: supp(b) = 2, supp(c) = 1.

lastly, we describe our approach.
We model a social network by a directed labeled graph

denoted by the triple G = (V,E,L), where V is the set of
nodes, E ⊆ V × V is the set of edges and L : E → L is a
function that assigns labels from the set L to edges. In our
setting, we assume that L only contains values +1 or −1, i.e.,
L = {+1,−1}. Clearly, L(u, v) = 1 denotes that the sign of
the edge (u, v) is positive, in contrast L(u, v) = −1 denotes
that the sign of the edge (u, v) is negative. We use the triple
(u, v,+1) and (u, v,−1) to indicate an edge from a node u
to a node v with sign positive and negative, respectively.

In the following we recall the definition of subgraph.
Definition 1: Let G = (V,E,L) and G′ = (V ′, E′,L) be

two graphs. We say that G′ is a subgraph of G (or G contains
G′) iff: (1) V ′ ⊆ V , (2) E′ ⊆ E and (3) E′ ⊆ V ′ × V ′. �

The method proposed in this paper is based on frequent
subgraph mining. A problem in this context is how to define
the support of a subgraph in order to understand if it is frequent
or not. In literature, two approaches have been proposed: one
considers the graph G as a single graph and counts how many
times G contains a graph G′ ([2], [8]); the other considers
the graph G partitioned in different graphs and to compute
the frequency of a graph G′ the algorithm counts the number
of the graphs that contain G′ at least once [16]. We use this
last definition and we denote by supp(G′) the support of the
graph G′, i.e., the number of graphs containing G′.

Let us assume G is a dataset of n graphs. The function
σ(G,G) is a function that cycles over all graphs Gi ∈ G and
checks if G is a subgraph of Gi, according to the Definition
1. If so, it puts Gi in the set of results and then returns this
set (σ(G,G) = {Gi | G is a subgraph of Gi ∧ Gi ∈ G}).
Thus, supp(G) = |σ(G,G)|. As an example, consider the set
of graphs G = {G1,G2,G3} in Figure 1. We can observe that
the support of the graph G1 (Figure 1(b)) is 2 because it is
subgraph of G1 and G2, in contrast the support of G2 (Figure
1(c)) is equal to 1 because it is subgraph of G2.

We now tackle the problem of predicting the sign of an
edge in online social networks. In general, given a network
where the sign of a specific edge is hidden/unknown we want
to predict the sign of this single edge. The method we propose
constructs a prediction model on the known network by using
a graph mining approach and then we use this model to predict
the missing sign. As in [9] we use the edge with missing sing
as test and all the known network as training set.

Definition 2 (Edge Sign Prediction Problem): Let G =
(V,E,L) be a network and E′ ⊆ E be a set of edges of
G, with no sign. If we have information about the sign of all
the remaining edges in G, the Edge Sign Prediction Problem
consists in inferring the sign of edges (u, v, ?) ∈ E′. �



IV. SOLUTION PROPOSED

Now, we present our approach to the problem in Definition
2. In particular, first we describe the computation of our
prediction model (Section IV-A) and then we explain how it
can be used for the prediction (Section IV-B).

A. Prediction Model
We saw that the analysis of relations between users in social

networks is often addressed using solutions based on triangles,
mainly because: (1) they are easy to calculate, (2) they are a
frequent pattern in social networks and (3) different theories
about “social balance” are based on them. Unfortunately, as
it has been shown in the experimental section of [9], without
contextual information about the edges triangles are not able to
capture complex interactions between users. Starting from this
observation our idea is to use generic subgraphs, discovered
from the network, instead of simple triangles. Our intuition
is that more complex structures may capture more complex
behaviors, often going beyond what a triangle can describe.
Our approach (Algorithm 1) reflects this intuition and uses
graph mining techniques to extract the frequent subgraphs,
the base of our prediction model, from a network.

Algorithm 1 MineRules(G,minSup,minConf )
Require: Directed and weighted graph G and support and

confidence thresholds minSup,minConf .
Ensure: A set of sign prediction rules Rset.

1: DatEgo=ExtractEgo(G);
2: FreqPat=ExtractFreqPat(DatEgo,minSup)
3: Rset=CreateRule(FreqPat,minConf )

The main steps to construct our prediction model are: gener-
ate a ego-network dataset from G; extract frequent subgraphs
from the dataset; generate sign rules using frequent subgraphs.

1) Ego-network Extraction: The first step is to generate a
subdivision of the network G in different subgraphs, called
ego-networks. An ego network is a sub-network centered on a
particular node who is the subject of the network. The focal
point of the network is called the ego. In an ego-network, only
nodes that are directly connected to the ego form the extracted
substructure. An ego-network is defined as follows:

Definition 3 (Ego network of a node): Let G = (V,E,L)
and v be a network and a node of G, respectively. The ego-
network of the node v is the sub-network EG(V ′, E′,L),
where the set V ′ is composed of all the neighbors of v
(including v itself) and the set E′ ⊆ E is the set of all edges
in E that are established only between nodes in V ′. �

An ego-network enables a focused view on the specific
properties of a node highlighting all its interactions with the
neighbors. Figure 2 depicts an ego-network example, showing
the relations of the node C (the ego) and its neighbors.

In our approach, for each node of the initial network
we extract its ego-network. In this way we transform the
initial network into a dataset of ego-networks G (DatEgo in
Algorithm 1) which is logically equivalent to a transactional
dataset, where each transaction is represented by an ego-
network related to a specific user (node).

Figure 2. The ego network of node C

(a) (b)

Figure 3. Example of rules: in bold the edge of the prediction
An objection to this approach may be that we are manip-

ulating the original structure, decomposing thus altering the
possible results. We defend our choice with two arguments.
First, it has already been shown in literature that this approach
is able to unveil interesting properties in the case of community
discovery [3]. Second, our purpose is to infer a specific
property of an edge by analyzing the behavior of the different
nodes in the surroundings of the edge itself. We then focus on
each node directly affected by the edge itself, as what happens
three or four degrees of separation away is not relevant. The
next step is to understand how much individuals have the same
behavior and so, which behaviors are common.

2) Extraction of frequent subgraphs: At this step, the
objective is to extract all the common structures from the ego-
network dataset G, obtained in the previous step. We use graph
mining techniques for the extraction of frequent subgraphs. We
use the notion of frequency of a graph defined in Section III as
the number of ego-networks containing the graph (σ(G,G)).
The function ExtractFreqPat in Algorithm 1, given the minSup
threshold, returns the subgraphs contained in at least minSup
ego-networks (|σ(G,G)| ≥ minSup).

3) Construction of rules: The goal of this step is the gen-
eration of rules that are the basis of our approach. Intuitively,
a rule models how the users establish relations between them.

Definition 4 (Rule): Let G1 = (V1, E1,L) and G2 =
(V2, E2,L) be two graphs. This pair of graphs form a rule
R : (G1 → G2) (with G1 body and G2 head of the rule) iff
∃!(u, v) ∈ E2 s.t. (u, v) /∈ E1 and u ∈ V1. The edge (u, v) is
called edge of the prediction. The set of nodes and edges of
a rule are respectively VR = Vhead and ER = Ehead. �

This definition allows two types of rules as shown in Figure
3: a rule where the edge of prediction is between two nodes of
the body (Figure 3(a)) and a rule where the edge of prediction
includes a new node that there was not in the body (Figure
3(b)). Given a rule we can define its confidence as follows.

Definition 5 (Confidence of a rule): Let R be a rule of the
form (G1 → G2), and let supp(G1), supp(G2) be the support
of body and head, we define the confidence of a rule R as:

Conf(R) = supp(G2)
supp(G1)

�
The set of rules composing our prediction model is con-

structed on the frequent subgraphs results:
1) Given the set of extracted frequent subgraphs F =
{G1, G2, . . . , Gn}, we group them in sets composed
of graphs with the same number of edges and we sort
the list of these sets in ascending order of number of



edges. So, we obtain Fgrouped = {Gr1,Gr2, . . . ,Grm}
(m ≤ n), where the graphs in Gri have a number of
edges less than the graphs in Grj if i < j;

2) Starting from the set of graphs with the lowest number
of edges Gr1, we take each element of this set as body
of a rule and for each body we search the graphs that
can be head of the rule. These graphs are taken from
the set of graphs which have exactly one more edge;
we call this set Gh. In particular, given a body B we
select from Gh all the graphs which can be head of a
rule with body B, then we compute for each of them
the confidence and we put in our model only the rules
that have the confidence greater than a given threshold;

3) After we have taken all graphs of the set Gr1 as body, we
repeat the process described in point 2 by considering
the elements of the next set of Fgrouped.

In this way all pairs of subgraphs satisfying Definition 4
and with a confidence (Definition 5) greater than a specific
threshold, are included in the rule set, that is our model.

B. Prediction

Once we have constructed the model, i.e. our set of rules,
we can use it to predict the sign of a set of edges in a network.

To classify the sign of an edge we have to look for all rules
that can be compatible with the edge we want to classify. These
rules are called candidate rules and are defined as follows:

Definition 6 (Candidate rule): Let (u, v, ?) be an edge in
a network G without the sign information, the rule R =
(head → body), with arch of prediction (up, vp, lp) is called
candidate rule for the edge (u, v, ?) if exists a bijective
function f : VG → VR such that:

1) ∀(k, h) ∈ G, (f(k), f(h)) ∈ ER

2) ∀(k, h) ∈ G, L((k, h)) = L((f(k), f(h))
3) (up, vp) = (f(u), f(v))

�
Thus, after selecting all the candidate rules, we have a set

of rules, and each of them provides a sign for the edge to
be predicted. If these rules have the same sign, then it is
indifferent the rule we choose for predicting the sign; but,
if there are rules with different sign we must select the best
rule for maximizing the precision of the model.

The best rule among candidate ones for predicting the sign
of edge, is the rule which has the highest probability of coming
true, i.e., the rule with the best confidence. The confidence of
a rule is calculated according to the Definition 5 and is a
measure that indicates how often a body evolves in a head.

Algorithm 2 describes the process described above.

V. EXPERIMENTS

This section presents the results of the prediction using
the model constructed as described in Sections III-IV on
three large online social networks: Epinions, Slashdot and
Wikipedia. We describe their characteristics and then show
and discuss the classification performances. The aim of the
framework is to obtain the rules that better describe the trust
structures in the dataset.

Algorithm 2 Predictor(G,(u,v,?),Rset)
Require: A directed and weighted graph G(V,E,L), the edge

(u, v, ?) ∈ E with omitted sign and the model Rset

Ensure: The predicted sign

1: PredictionRule = ∅
2: for all R ∈ Rset do
3: if IsCandidateRule(R) then
4: if R.conf > PredictionRule.conf then
5: PredictionRule = R
6: end if
7: end if
8: end for
9: return sign(PredictionRule)

|V | |E| |E+| C(u, v) ≥ 10 C(u, v) ≥ 25

Epinions 119,217 841,200 85% 359,381 211,819
Slashdot 82,144 549,202 77.4% 51,361 22,630
Wikipedia 7,118 103,747 78.7% 61,321 29,610

Table I
STATISTICS OF OUR NETWORKS

Dataset

We tested our framework on the same datasets used in [9],
enabling a direct comparison of advantages and weaknesses of
an approach based on frequent subgraph mining. In Epinions
the nodes are the users and an edge is the evaluation made
by an user of the opinions of another user, that may be
positive or negative. Slashdot a news site regarding the world
of technology. In the “Slashdot Zoo” a user can mark another
user as friend or foe. Wikipedia the network is extracted from
the votes cast by the users in the elections for promoting users
to the role of administrator. A positive/negative edges between
users mean votes for/against the promotion.

In Table I are summarized some characteristics of the
datasets and we can observe that the sign of edges in network
is largely positive (from 77% to 85% of edges have a positive
sign). We also report the number of edges with a given
minimum embeddedness C(u, v), that counts the common
neighbors of the endpoints of the edge, or:

Definition 7 (Embeddedness): Let G(V,E) be a graph. The
embeddedness C(u, v) of an edge (u, v) ∈ E is C(u, v) =
|{k ∈ V, k ∈ Neighbours(u) ∧ k ∈ Neighbours(v)}|, where
Neighbours(u) = {v ∈ V,∃(u, v) ∈ E}. �

The embeddedness is computed not on directed edges, i.e.
Neighbours(u) counts the in- and the out-neighbors of u.
C(u, v) is used in [9] because the social balance approach
performs better for edges with an high embeddedness. How-
ever, edges with C(u, v) ≥ 25 are a small fraction of the
network, from slightly more than 4% (Slashdot) to almost
29% (Wikipedia). Good performing rules on these edges do
not describe the entire network.

The final piece needed to validate our result is the accuracy
function: we follow [9] for comparison purposes. The accuracy
function A(G,M,Cmin), given a signed graph G, a model M
and a minimum embeddedness Cmin is defined as:

A(G,M,Cmin) =
|{(u, v) ∈ G : Predictor(G, (u, v),M) = sign(u, v)}|

|{(u, v) ∈ G : C(u, v) ≥ Cmin}|



Figure 4. Number of rules from Wikipedia varying minSup and minConf .

Results

For a comparison with the performance in [9], we must have
the same set up for the experiments. Therefore we created,
for each network, a balanced version of the network where
the number of positive and negative edges are equal. In the
balanced network we have included all the negative edges, and
selected at random the same number of positive edges.

Identification of the best performing set of rules. To cre-
ate our model we need a threshold for support and confidence,
with the aim of not extracting and create useless rules, as the
mining phase is also time consuming and effective support
and confidence thresholds are able to significantly prune the
search space, dramatically lowering the time requirements. On
the other hand if the thresholds are too high, we may end
up excluding some rules that can improve the classification
performances. We report in Figure 4 the number of rules
generated with different support and confidence thresholds.
We can see that without a support threshold, we end up with
more than 1000 rules. On the other hand, a 0.8 confidence
threshold generates almost 200 rules even with very strict
support thresholds. We decided to prune rules with a fairly
high confidence (0.95 or more) as this means that when we
can apply a rule, we already know that 95% of the outcomes
of that rule in the network are described by it. We are less
strict on the support, as we want as many rules as we can but
not an unmanageable quantity, fixing it as at least 1%.

To better understand how the values of support and confi-
dence affect the classification performances, the experiments
were carried out on random subnetworks having 1% of the
nodes of the starting network: we have selected at random
1% of nodes of graph and we have created a subgraph with
vertex set composed by these nodes and edge set composed
by all edge between them. We sampled the networks to test
our framework with different threshold values for support and
confidence. The results are summarized in Table II.

In Table II, the absolute values of accuracy are not signifi-
cant. The set of rules were extracted from the original complete
networks, but then they were applied on the sampled networks,
which do not have the characteristics of the original networks.
Also note that the 0% results are generated by the fact that
the threshold was too strict, not generating any rule. However,
what is interesting is how the accuracy of the classification
changes as a function of different thresholds of confidence and
support. In particular, demanding a too high confidence with
the same support hurts the quality of the results. On the other
hand, a higher support threshold usually increase the accuracy

Supp Conf Accuracy
0 10 25

Wikipedia

1% 0.90 70% 65% 63%
1% 0.98 68% 63% 63%
10% 0.90 79% 80% 68%
10% 0.98 0% 0% 0%

Slashdot

1% 0.90 75% 61% 62%
1% 0.98 54% 61% 62%
10% 0.90 16% 22% 26%
10% 0.98 0% 0% 0%

Epinions

1% 0.90 71% 70% 68%
1% 0.98 0% 0% 0%
10% 0.90 94% 97% 90%
10% 0.98 0% 0% 0%

Table II
DIFFERENT ACCURACY FOR DIFFERENT THRESHOLDS AND C(u, v).

Figure 5. Precision of the prediction of the sign of an edge. Leskovec-*
columns are the current state of the art. Color image.

performances (up to the very interesting 97% accuracy for
Epinions with 10% support an 0.9 confidence for the edges
with at least Cmin = 10). The main explanation is that the high
value of confidence threshold excludes many rules, therefore
many edges have not a candidate rule and thus they are not
classified. We leave as future work the validation of these
thresholds not on samples, to validate if the high support, fairly
high confidence and a reasonable amount of rules combination
can lead to better accuracy also on the complete networks.

Accuracy of prediction. In Figure 5 we show the perfor-
mances according to the accuracy function with our approach
and the classifier based on triangles presented in [9]. The
results are considered across different type of edges, according
to the Cmin(u, v) value (column color).

Our observations are the following. The most important
information is that our method outperforms the social balance-
based triangles method on all networks when considering the
total set of edges (the ones with minimum embeddedness equal
to 0, blue column). When classifying the sign of all edges of
the network, we have a little gain in Epinions, a gain from
below 80% to above 80% in Wikipedia, and a jump in Slashdot
from 70% to almost 90%. This is due to two factors: we have
rules that do not involve only triangles, but more complex
structures with four nodes, and we can also ignore misleading
triangles, being with a support or confidence not high enough.

A second observation is that the method presented in [9]
works best with edges presenting high values of minimum
embeddedness. On the other hand our approach based on rules
works the other way around (i.e. worse accuracy with high
embeddedness): this could be because if an edge is involved
in many triangles (high value of embeddedness means many
common neighbors, therefore many triangles that contains the
edge) it will have many candidate rules with high confidence.
Therefore it is more difficult to identify the best rule, resulting
in performance degradation. However, we also recall that the
set of edges with high minimum embeddedness is small (from



4% to 29% of a network) as reported in Table I. This means
that a classifier, to maximize its performances, will use the
rules extracted with our model, unless for edges with high
embeddedness, for which the triangle approach is preferred.

A third observation concerns our highr prediction quality on
the Wikipedia network, that is significantly different and shows
different connection dynamics. Regardless of the embedded-
ness of an edge, in the more complex relation environments
the trust relationships can be better modeled by more complex
structures extracted with our graph mining approach than the
simple ones extracted with the triangle approach.

The particularity of the distrust and of the different
trust dynamics. The negative relationships are different in
nature than the positive [14], and have a different propagation
mechanism on the social networks [6]: > 60% of the wrong
predictions occur when assigning the negative sign. This
finding is also emphasized by the most frequent rules used,
shown in Figure 6 for the Slashdot (a-d), Epinions (e-h) and
Wikipedia (i-l) respectively. These Figures show the rules used
more frequently by our framework to predict the sign of an
edge. The rules predicting positive signs are more commonly
used, again with the exception of the complex Wikipedia case.

Moreover, these rules can be used to have a qualitative
description of the trust dynamics in different environments.
First, in [9] authors report that the models extracted in one
network do not show significant decay in the classification
performances when applied to a different network, i.e. the
extracted trust dynamics are almost “universal” and captures
how trust spread in general, not in particular environments,
which are all the same. Our results are very different: there
is only one rule shared by two datasets (rules f and l in
Figure 6 are isomorphic). There are differences in how the trust
propagates in different networks, thus caution in assuming that
a model found in a dataset can be applied in a different one.

Rules b, e and i are very similar (though not isomorphic).
These rules state that a balanced general consensus (a triangle
of positive edges) frequently generates even more consensus,
attracting positive edges from nodes that are not part of the
triangle. Slashdot users go beyond the one degree of separation
of the trust: Figure 6a reports that node C ends up trusting node
A even if A is two degrees of trust away from it, thus part of
no triangle. In Epinions, negative consensus of another group
attracts frequently even more negative opinions, as depicted
in Figure 6g. In Wikipedia one would expect that a negatively
judged user will cast a positive vote on a user that is negatively
judged by the friends of its judges, but Figure 6k goes exactly
in the opposite direction. This is another proof of the more
complex dynamics present in a voting network.

VI. CONCLUSION

In this paper we have addressed the problem of creating a
framework for the trust inference in a online social network.
We proposed a prediction model that is constructed on the
known network by using an approach based on graph mining
techniques and then we use this model for predicting the
trust sign of a given set of edges of the network. Our model

(a) 14% (b) 9% (c) 7% (d) 7%

(e) 25% (f) 14% (g) 10% (h) 7%

(i) 20% (j) 19% (k) 14% (l) 13%

Figure 6. Rules used more frequently to predict the sign of an edge with
the percentage of the edges predicted on Slashdot, Epinions and Wikipedia

is able to capture complex relations among users thanks to
the use of generic frequent subgraphs discovered from the
network, instead of simple triangles. So, it allows us to infer
the trust/distrust relationships in those relational environments
that cannot be described by simply using the classical social
balance theories of triangles. Our experiments have proven that
extending the notion of social balance to groups of four or five
nodes can increase the quality of the sign classification. On
this basis, as a future development, we can create an extended
social balance theory, and a novel classification framework
based on it, using both graph mining and triangles.
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