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Abstract—Complex networks have been receiving increasing
attention by the scientific community, also due to the availability
of massive network data from diverse domains. One problem
studied so far in complex network analysis is Community
Discovery, i.e. the detection of group of nodes densely connected,
or highly related. However, one aspect of such networks has been
disregarded so far: real networks are often multidimensional,
i.e. many connections may reside between any two nodes, either
to reflect different kinds of relationships, or to connect nodes
by different values of the same type of tie. In this context, the
problem of Community Discovery has to be redefined, taking
into account multidimensionality. In this paper, we attempt to
do so, by defining the problem in the multidimensional context,
and by introducing also a new measure able to characterize the
communities found. We then provide a complete framework for
finding and characterizing multidimensional communities. Our
experiments on real world multidimensional networks support
the methodology proposed in this paper, and open the way for
a new class of algorithms, aimed at capturing the multifaceted
complexity of connections among nodes in a network.

I. INTRODUCTION

Inspired by real-world scenarios such as social networks,
technology networks, the Web, biological networks, and so
on, in the last years, wide, multidisciplinary, and extensive
research has been devoted to the extraction of non trivial
knowledge from such networks. Predicting future links among
the actors of a network ([13], [4]), detecting and studying the
diffusion of information among them ([3]), mining frequent
patterns of users’ behaviors ([2], [20], [7]), are only a few
examples of the objective in the field of Complex Network
Analysis, that includes, among all, physicians, mathematicians,
computer scientists, sociologists, economists and biologists.

The data at the basis of this field of research is huge, het-
erogeneous, and semantically rich, and this allows to identify
many properties and behaviors of the actors involved in a
network. One crucial task at the basis of Complex Network
Analysis is Community Discovery, i.e., the discovery of group
of nodes densely connected, or highly related. There exist
many techniques able to identify communities in networks
([11], [9]), allowing to detect hierarchical connections, in-
fluential nodes in communities, or just group of nodes that
share some properties or behaviors. In order to do so, the
connections among the nodes of a network are posed at the
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center of investigation, since they play a key role in the study
of the network structure, evolution, and behavior.

Nowadays, most of the work done in the literature is limited
to a very simplified perspective of such relations, focusing
only on whether two nodes are connected or not. In the
real world, however, this is not always enough to model all
the available information, especially if the actors are users,
with their multiple preferences, their multifaceted behaviors,
and their complex interactions. A more sophisticated analysis
of these element would help all the techniques basing their
efficacy on the knowledge of the structure of a network.

To this aim, in this paper we deal with multidimensional
networks, i.e. networks in which multiple connections may
exist between a pair of nodes, reflecting various interactions
(i.e., dimensions) between them. Multidimensionality in real
networks may be expressed by either different types of con-
nections (two persons may be connected because they are
friends, colleagues, they play together in a team, and so
on), or different quantitative values of one specific relation
(co-authorship between two authors may occur in several
different years, for example). We can also distinguish between
explicit or implicit dimensions, the former being relationships
explicitly set by the nodes (friendship, for example), while the
latter being relationships inferred by the analyst, that may link
two nodes according to their similarity or other principles (two
users may be passively linked if they wrote a post on the same
topic).

In this scenario, we introduce the problem of Multidimen-
sional Community Discovery, i.e. the problem of detecting
communities of actors in multidimensional networks. We de-
fine a concept of multidimensional community, and we intro-
duce a new measure aimed at analyzing the multidimensional
properties of the communities discovered. We then present
a framework for finding and characterizing multidimensional
communities and we show the results obtained by applying
such framework on real-world networks, giving a few ex-
amples of interesting multidimensional communities found in
different scenarios: movie collaborations and terrorist attacks.

Our main contribution is then: we introduce and formally
define the problem of multidimensional community discovery;
we introduce a measure for characterizing the communities
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(a)
Fig. 1.

Three examples of multidimensional communities

found; we build up a framework for solving the introduced
problem by means of a conjunction of existing techniques and
our newly introduced concepts; we perform a case study on
real networks, showing the results obtained and the character-
ization of the communities.

II. FINDING AND CHARACTERIZING
MULTIDIMENSIONAL COMMUNITIES

In this section, after a model for multidimensional networks,
we define multidimensional communities, a measure aimed at
characterizing them, and the problem treated in this paper.

A. A model for multidimensional networks

We use a multigraph to model a multidimensional networks
and its properties. For the sake of simplicity, in our model
we only consider undirected multigraphs and since we do not
consider node labels, hereafter we use edge-labeled undirected
multigraphs, denoted by a triple G = (V, E, D) where: V is
a set of nodes; D is a set of labels; E is a set of labeled
edges, i.e. the set of triples (u,v,d) where u,v € V are nodes
and d € D is a label. Also, we use the term dimension to
indicate label, and we say that a node belongs to or appears
in a given dimension d if there is at least one edge labeled
with d adjacent to it. We also say that an edge belongs to or
appears in a dimension d if its label is d. We assume that
given a pair of nodes u,v € V and a label d € D only one
edge (u,v,d) may exist. Thus, each pair of nodes in G can be
connected by at most |D| possible edges.

B. Multidimensional Community

As we see in Section III, the literature on community
discovery presents a large number of diverse definitions of
community. Adding multidimensionality to the problem leads
to an even more opinable concept of multidimensional com-
munity. We start with a high-level possible definition, then we
try to add more semantic to it.

Definition 1 (Multidimensional Community): A
multidimensional community is a set of nodes densely
connected in a multidimensional network.

As we see, while in a monodimensional network the density
of a community refers unambiguously to the ratio between the
number of edges among the nodes and the number of all pos-
sible edges, the multidimensional setting offers an additional
degree of freedom (i.e., the different dimensions). Consider
Figure 1: in (a) we have a community whose density mostly
depends by the connectivity provided by one dimension; in
(b) we have a different situation, as both the dimensions
are contributing to the density of the community. Should
the two be considered equivalent or can we discern among
them? In order to answer this question, we define a measure,
p, aimed at characterizing multidimensional communities. In
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order to make it possible to compare its values among different
networks, we make it take values in [0, 1]. In the following we
use this notation: ¢ is a multidimensional community; d is a
dimension in D; P is set of pairs (u,v) connected by at least
one dimension in the network; P is the set of pairs connected
by at least two dimensions P, is the subset of P appearing in
¢; P, C P is the subset of P containing only pairs in c.

C. Redundancy p

The measure we define is called redundancy, and it captures
the phenomenon for which a set of nodes that constitute a
community in a dimension tend to constitute a community
also in other dimensions. We can see this measure as a simple
indicator of the redundancy of the connections: the more
dimensions connect each pair of nodes within a community,
the higher the redundancy will be. We can then define the
redundancy p by counting how many pairs have redundant
connections, normalizing by the theoretical maximum:

>y {d: 3(u,v,d) € E}|

— D] x| Pe|
(u,v)EP,

With the help of Figure 1 we see how p takes values in [0, 1]:
in 1(b), each pair of nodes is connected in only one dimension,
then |P.| = 0 and the numerator is equal to zero; in 1(c), all
the node pairs are connected in all the dimensions of D, which
is equivalent to the number of connected pairs | P.| multiplied
by the number of network dimensions |D| (the denominator),
making p = 1. We see that p is undefined for communities
formed by one single node, where |P.| = 0 and then the
denominator is equal to zero. For this type of communities,
however, the redundancy measure is not meaningful, thus we
can ignore this case.

D. Problem definition

We can now formulate the problem under investigation:

Problem 1 (MCD): Given a multidimensional network G,
find the complete set of multidimensional communities C, and
characterize each ¢ € C according to p.

pe = (1

III. RELATED WORK

There are many studies on community detection, in vari-
ous fields of research: computer science, physics, sociology,
and others. Most of them can be grouped according to the
definition of community they use.

One possibility is defining a community as a set of nodes
with a high density of links among them, while there are sparse
connections among different communities. The papers work-
ing with this definition rely on information theoric principles
[15] or on the notion of modularity [6], which if a function
defined to detect the ratio between intra- and inter-community
number of edges. Modularity is widely studied and extended
in many works: one of them is a greedy optimization able to
scale up to networks with billions of edges [5].

Other works rely on some statistical properties of the
graph. In [10], a framework for the detection of overlapping
communities, i.e. communities allowing the vertices to be in
more than one community, is presented.



Another class of approaches rely on the propagation in the
network of a label [17] or a particular definition of structure
(usually a clique [14]). The first approach is known for being
a quasi linear solution for the problem, the second one allows
to find overlapping communities.

One algorithm that tries to maximize quality and quantity
measures on its results is InfoMap [18], a random walk-
based algorithm. An emerging novel problem definition can be
found in [1], in which authors state that community discovery
algorithms should not group nodes but edges, emphasizing the
role of the relation residing in a community.

Since 2009, multidimensionality has started to be taken
into account in the community discovery problem. To the
best of our knowledge, the main approaches are two. In [12]
the authors extend the definition of modularity to fit to the
multidimensional case, which they call “multislice”. In [19]
the authors create a machine learning procedure which detects
the possible different latent dimensions among the entities in
the network and uses them as features for the classification
algorithm. It is important to note that both approaches do
not consider any definition of “multidimensional community”,
neither they characterize and analyze the communities found
and their multidimensional structure: their main limitation is
to simply define a method for dealing with multidimensional
networks, extracting monodimensional communities as output.

IV. A SOLUTION FOR MCD

Given the problem definition above, a complete solution
for it would require to design and develop an algorithm
for extracting multidimensional communities, driven by the
multidimensional density of the connections among nodes.
However, according to our vision, it is difficult to define
multidimensional density as universal, which is exactly what
makes p meaningful. In addition, we believe that trivial design
choices may lead to an algorithm producing communities
with a distribution of p possibly unfairly unbalanced by the
decisions taken. Moreover, we believe that the main con-
tributions of this paper are the problem definition and the
characterization of the communities by the introduction of
p. For all these reasons, we leave for future research the
design and implementation of a multidimensional community
discoverer able to exploit the additional degree of freedom that
multidimensionality provides, and here we propose a different
solution based on existing, monodimensional, algorithms.

In order to be able to apply existing solutions to multidi-
mensional network, and to be able to extract multidimensional
communities, we have to introduce a mapping function ¢,
whose function is to transform a multidimensional network in
a monodimensional one, trying to keep as much information as
possible, and a function ¢’ which recovers multidimensional
information from monodimensional communities. The logical
workflow to solve MCD is then:

645G L 00 p(ce) )
where ¢ is a function that converts a multidimensional network
G to a monodimensional network G, C'D is any algorithm
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for community discovery on monodimensional networks, ¢’
is a function that, for each monodimensional community c,
restores the multidimensional connections originally residing
among the nodes of ¢ in G, thus returning a set of multidimen-
sional communities C, on which we are then able to compute
our evaluating function and p.

We next give possible definitions of ¢, we discuss which
algorithm to use as C'D, and we see how to implement ¢'.

A. Three possible ¢ mappings

There can be several different definitions for ¢, leading
to different monodimensional networks built from G. One
possible class of them can be designed by simply flattening
multidimensional edges to monodimensional ones, possibly
weighting the monodimensional edges by some functions of
the original multidimensional structure. An observation in
support for this strategy is that many community discoverer
use edge weights to reflect a more sophisticated definition
of dense connections. In the following we assume to use a
weight-based class of ¢ functions, and, in order to try to
preserve as much multidimensional information as possible,
we define three different weighting strategies, leading to three
different ¢.

The first weight we define is p and requires to weight the
(u,v) edge in G with 1 if there exists at least one dimension
connecting w and v in G, or, in formula:

1 if{3d:(u,v,d) €E}
Hu,pv = 0

otherwise
In the remainder of the paper, we refer to the ¢ designed
with this weight as ¢,. This flattening clearly looses most
of the multidimensional information residing in G, except
the neighborhood: any two nodes connected in G are also
connected in G.

Can we do better? Can we preserve more of the original
information? One small improvement would be counting the
number of dimensions connecting any two nodes v and v and
using this as weight for the monodimensional edge added. We
call this weight v, which can be defined as:

vy = |{d: (u,v,d) € E}|

and we refer to the ¢ built upon v as ¢,.

We now consider a slight modification of v that, instead of
taking into account only the connection between u and v, also
looks at their neighborhood, motivated by the intuition that
common neighbors will likely be in the same community of
u and v. We refer to this weight as 7 and define it as:
o ‘N u,l NN, v,l|

|Nu,l U N'u,l‘ -2
where V. ; is the set of neighbors in dimension d for a node.
This is actually a multidimensional version of the clustering
coefficient, and, according to the intuition behind it, should be
able to better reflect the strength of the ties.

Note that there could be many other possible weighting
strategy, as well as other different class of ¢ relying on
different principles. For example, one might considering using
the betweenness centrality instead of the clustering coefficient,
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or it is possible to consider also even more sophisticated
measures. Note, however, that this could also mean additional
computational complexity at the pre-processing stage, that
adds to the community discoverer to be used afterward.
However, to keep complexity low, and for sake of simplicity,
in this paper we only examine the results obtained by using
the three ¢ defined above.

B. The choice for CD

At this stage, any algorithm for community discovery can
be used, with one caveat: we built a class of weight-based ¢
functions. This has to be taken into account by the algorithm,
thus the only limitation we pose is to choose an algorithm
able to handle edge weights. In our experiments, we present
the results obtained by using an algorithm based on random
walk [16], one based on label propagation [17] and one based
of the fast greedy optimization of the modularity [6] as choices
for possible monodimensional community discoverer. In our
analysis we show how the choice among these three does not
considerably affect the resulting distribution of p.

C. Returning multidimensional communities via ¢’

Last question remained open so far about our workflow
is, given the set of monodimensional communities returned
by the CD step, how to get back restoring the original
multidimensional information. This step turns out to be trivial,
as, for every community, we have the set of the IDs of the
nodes involved, and we can easily connect them with the
original edges connecting them in G.

V. EXPERIMENTS

In order to validate our framework, we tested it on different
real world networks, extracted from various sources. In this
section, we provide the results obtained in this phase.

A. Tools, algorithms and running times

We ran our experiments on a server with 2 Xeon processors
at 3.2GHz, 8GB of RAM, running Linux. The framework was
implemented using R, making use of the igraph' library.

For the C'D step, as stated above, we chose three different
algorithms: on based on random walk [16], one based on label
propagation [17] and one based of the fast greedy optimization
of the modularity [6]. In the rest of the paper we refer to
them as WT, LP and FGM. Note that, while LP and FGM are
parameter-free, WT requires the length of the walk (that we
set to 4 after empirical observations). Note also that WT and
FGM returns the complete dendrograms of the communities,
thus we had to choose a way to cut it. We then decided to
take the cut maximizing the modularity as the best cut.

Given that the most computational expensive step in our
framework is the extraction of monodimensional communities
by external algorithms, we do not provide an extensive study
of the running times. However, a single network took at most
five hours to be processed by the nine combinations of pre-
processors(¢) and algorithms for CD. We also report that
the running time for computing ¢, ¢’, and p are marginally
relevant on the total running time.

'http://igraph.sourceforge.net/
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Network V] [E] [P] |D] k N #cc %GC  %SE

GTD 2509 25200 24267 124 20.08 19.34 46 9553 8598

IMDb 28042 1291625 1131951 10 92.12 80.73 28 99.77 79.13
TABLE I

STATISTICS OF THE NETWORKS: k IS THE AVG DEGREE, N THE AVG
NUMBER OF NEIGHBORS, #cc THE NUMBER OF COMPONENTS, %GC THE
PERCENTAGE OF NODES IN THE GIANT COMPONENT, %S E 1S THE
NUMBER OF SINGLE EDGES CONNECTING A PAIR

LP WT FGM
Netwok | @ J el @ lel @l @
bu 122 0.622 192 0.620 74 0.584
GTD (oM 109 0.547 197 0.603 65 0.611
bn 165 0.500 194 0.621 78 0.616
bu 87 0.415 860 0.494 64 0.442
IMDb b 124 0.483 847 0.541 66 0.536
o 148 0.460 823 0.507 63 0.530
TABLE 11

NUMBER OF COMMUNITIES FOUND (|C|) AND MODULARITY (Q) FOR
EACH COMBINATION OF NETWORK, ¢ AND ALGORITHM.

B. Networks

For our study, we created the following multidimensional
networks from real world data:

o GTD: From the database of global terrorism?, we created
a group-group network in which each terrorist organiza-
tion is connected to another one if they have performed an
attack in the same country, in the same year. The dimen-
sions of this network are defined as the attacked country.
In the orginal GTD database, the records include roughly
2k organizations (our nodes) active in 124 countries (our
dimensions).

« IMDb: From the Internet Movie Database’, we created a
collaboration network of the movie issued in past decade
(2000-2009), where each node represents a person who
took part in the realization of a movie (directors, cast,
song writers, and so on), and two persons are connected
if they participated to the realization of the same movie.
We considered each year as a dimension of the network.

Basic statistics of these networks are reported in Table I.

C. Quantitative Evaluation

Purpose of this section is to give a quantitative analysis of
the results obtained, under two different perspectives driven
by the following questions:

Q1. Can we evaluate the performances of the different con-
junctions of ¢ and CD, and compare them among the
different networks?

Q2. How does the choice of a combination of ¢ and C'D
affect the distribution of p over the communities?

In order to answer QIl, we looked at the values of the
modularity measure (as defined in [6]), computed on the
resulting set of communities C. Note that we could have
computed the modularity on C instead (the modularity allows
to be computed also in multidimensional networks), but this
would have been inconsistent with the use of ¢, which would
have been disregarded in that way. Instead, the modularity
takes into account the weights defined in ¢.

This measure gives a value between zero and one, indicating
how “good” nodes where partitioned into groups. The higher

Zhttp://www.start.umd.edu/gtd
3http://www.imdb.com/
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Fig. 2. The cumulative distribution for p in GTDand IMDb (Color Image).

the value of modularity, the higher the partitioning reflects
the division in the community of the graph that maximizes
intra-community edges and minimizes inter-community edges.
Many researchers use the modularity scores as evaluation, or
as parameter to be optimized by the community discovery
algorithm. However, this is only a partial evaluation of the
results, since the well-known problems of modularity [8] (such
as the resolution problem, witnessed also by our Table II
in which one can see that modularity-based algorithm FGM
retrieve always a smaller number of bigger communities).

We computed anyway the modularity scores of each com-
bination of community discovery algorithm and preprocessor,
for all datasets. The results are reported in Table II, for every
combination of network, ¢, and C'D. In the table we report in
bold, for each algorithm, which ¢ produced the highest value
of modularity. We are interested in seeing whether a specific
combination of ¢ and C'D tends to produce higher scores. Note
that the values are not comparable between different networks
since different network topologies may facilitate higher scores.

From Table II, we note that in only one out of six network-
algorithm combinations, ¢, was the best among the three ¢.
This confirms that, in most cases, keeping more information
about the dimensions of a network leads to higher modularity,
i.e. to a better set of communities.

In order to answer Q2, we analyzed the distribution of
p for the output of each network-¢-algorithm combination.
These distribution is depicted in Figure 2. We can see that
the distributions are generally overlapping and there is not
a universally dominant combination. This confirms that our
workflow does not significantly affect the distribution of the
p measure.

In addition, the information in Figure 2 may be used
in conjunction with modularity in order to achieve richer
knowledge about the results. Modularity, in fact, indicates
how well the network is partitioned, and p characterize the
multidimensional structure of the partitioning.

VI. CONCLUSIONS AND FUTURE WORK

We have addressed the problem of community discovery,
applied to the scenario of multidimensional networks. We have
given a possible definition of multidimensional community
and provided a measure aimed at characterize the communities
found. On this basis, we have devised a framework for finding
and characterizing multidimensional communities, which is
based on a mapping from multidimensional to monodimen-
sional network, on the application of existing monodimen-
sional community discovery algorithms to it, on the restoring
of the originally residing multidimensional structure of the
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communities, and on the characterization of them via the p
measures. Our results obtained on real world networks are
encouraging, and provide a basis for future research on this
direction. In particular, we plan to investigate the possibility of
creating a multidimensional community discovery algorithm
driven by p scores, possibly based on existing multidimen-
sional methods such as the one in [12].
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