Finding Redundant and Complementary Communities in Multidimensional Networks

Michele Berlingerio, Michele Coscia, Fosca Giannotti

KDDLab, ISTI CNR, PISA, ITALY

Problem

Problem 1 (MCD) Given a multidimensional network \(G \), find and characterize the multidimensional communities.

Characterization

Examples of multidimensional communities

- Variety \(V_c \): # of different dimensions
- Exclusivity \(E_c \): # of pairs connected by only one dimension
- Homogeneity \(H_c \): distribution of edges over dimensions

We aggregate the above by their product:

\[
\gamma_c = V_c \times E_c \times H_c
\]

Algorithm

Algorithm 1 MCD_Solver

Require: \(G, \phi, CD \)

Ensure: set of multidimensional communities \(C \) and sets of their characterization \(S_c, S_\phi \)

1. \(G \leftarrow \phi(G) \)
2. \(C \leftarrow CD(G) \)
3. for all \(c \in C \) do
4. \(c \leftarrow \phi(c) \)
5. \(C \leftarrow C \cup c \)
6. \(S_\phi \leftarrow S_\phi \cup \mu(c) \)
7. \(S_S \leftarrow S_S \cup \gamma(c) \)
8. end for
9. return \(C, \Gamma, P \)

Mapping Function \(\phi \)

We use three different \(\phi \):

- Connectivity check:
 \[
 \mu_{u,v} = \begin{cases}
 1 & \text{if } \exists \{d : (u, v, d) \in E\} \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Number of dimensions:
 \[
 \nu_{u,v} = |\{d : (u, v, d) \in E\}|
 \]

- Multidimensional clustering coefficient:
 \[
 \eta_{u,v} = 1 + \frac{|N_u \cap N_v|}{|N_u \cup N_v| - 1}
 \]

Run Through Example

Run through example for three instances of MCD_Solver varying the \(\phi \) parameter

References