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Abstract

Within the large body of research in complex network analysis, an im-
portant topic is the temporal evolution of networks. Existing approaches
aim at analyzing the evolution on the global and the local scale, extracting
properties of either the entire network or local patterns. In this paper,
we focus on detecting clusters of temporal snapshots of a network, to be
interpreted as eras of evolution. To this aim, we introduce a novel hierar-
chical clustering methodology, based on a dissimilarity measure (derived
from the Jaccard coefficient) between two temporal snapshots of the net-
work, able to detect the turning points at the beginning of the eras. We
devise a framework to discover and browse the eras, either in top-down or
a bottom-up fashion, supporting the exploration of the evolution at any
level of temporal resolution. We show how our approach applies to real
networks and null models, by detecting eras in an evolving co-authorship
graph extracted from a bibliographic dataset, a collaboration graph ex-
tracted from a cinema database, and a network extracted from a database
of terrorist attacks; we illustrate how the discovered temporal clustering
highlights the crucial moments when the networks witnessed profound
changes in their structure. Our approach is finally boosted by introducing
a meaningful labeling of the obtained clusters, such as the characterizing
topics of each discovered era, thus adding a semantic dimension to our
analysis.

1 Introduction

One research direction in analysis of complex networks that has attracted re-
searchers in various fields, including Data Mining, is the study of network evo-
lution over time. Time in networks can play a double role: the entities involved
may perform actions, and the connectivity structure may change. In this last
setting, several phenomena can be analyzed, and much effort has been devoted
in this direction so far [26, 25, 20, 5, 4].

In this paper, which extends our preliminary study [6], we focus on detecting
clusters of temporal snapshots of an evolving network, to be interpreted as eras
of evolution of the network. By analyzing the similarity of the structures of
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consecutive temporal snapshots of the same network, we observe that, despite
global trends of similarity, it is possible to detect periods of sudden change
of behavior, where people act in counter-trend, making this similarity either
decrease, or suddenly start increasing very fast, much more than the average.

In many real-life social networks, in fact, a common phenomenon is that
people tend to both keep being part of the networks, and keep alive all the con-
nections created in the past. On the other hand, new users join the networks
as time goes by, and people set new relationships while keeping the previous
ones[26]. However, in a particular class of networks, which includes many co-
authorship, transportation, and technological networks, while the number of
newly created links tends to be almost constant at every snapshot, the num-
ber of previous relationships kept alive grows, thus the global effect of newly
added nodes or edges looses importance over time [4]. Because of this, the
similarity of the structure of two consecutive temporal snapshots increases al-
most at each step. The increase, however, is not locally uniform: for example,
in a co-authorship network, there can be one snapshot where suddenly people
change behavior and start giving more importance to creating new connections,
In other words, despite a global moderate conservative trend, people can sud-
denly alternate highly more conservative periods, or a highly more innovative
behavior.

On the other hand, there are other classes of networks that behave differently
from the ones cited above, in a more dynamic way, where new connections
replace old ones, and the importance of having new nodes or new links, globally
dominates the advantages of preserving old nodes or edges. However, even in
this class of evolving networks, it is possible to detect different paces of the
evolution along time.

The aim in this paper is to catch these sudden changes by detecting the
snapshots in which they start. Intuitively, these are starting points of new eras,
i.e. turning points in the evolution of a network. In a globally changing world,
we then want to detect eras characterized not by changes in structure (that we
not only allow within the same cluster of snapshots, but we also expect), but
rather characterized by a change in counter-trend with the previous era: either
the previous era results more conservative, or it is actually more innovative than
the era under investigation.

To this aim, we introduce a novel hierarchical clustering methodology, based
on a dissimilarity measure derived from the Jaccard coefficient computed be-
tween two temporal snapshots of the network. We devise a framework to dis-
cover and browse the era hierarchy either in top-down or a bottom-up fashion,
from the lowest level of the single temporal snapshots, to the highest level of
the complete period of existence of the network.

In order to do so, we find a measure of the dissimilarity of two temporal
snapshots, and we show how to use it as a basis for detecting starting points of
new eras. We apply this methodology to three real networks, extracted by the
well known bibliographic database DBLP, the movie database IMDb, and the
GTD database of terrorist attacks. From these sources, we build three networks
showing very different behaviors in their evolution: a co-authorship network
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from DBLP, a collaboration network from IMDb, and a cell-cell network from
GTD, where two terrorist cells are connected if they performed an attack to the
same country. On each of them, we analyze both the sets of nodes and edges,
and study their evolution along time.

Our contribution can be then summarized as follows: we define a dissimi-
larity measure between two temporal snapshots of an evolving network, aimed
at detecting turning points of the evolution; driven by this measure, we devise
a methodology for hierarchically clustering the history of the network and we
test our framework on real networks; we define also a methodology for adding
a semantic layer to our analysis, in order to describe the eras obtained; finally,
we analyze the implications of our framework to the link prediction problem.

2 Related Work

There are several studies in the literature of evolving networks. They differ by
the problem treated, the level of the analysis, the solution proposed, and the
networks analyzed.

Due to the difficulty of obtaining fine-grained temporal information about
the arrival of a node or an edge in an evolving network, the temporal analysis of
network makes often use of temporal snapshots of the evolution. In [22] authors
use this method for studying the linkage pattern of blogs and the emergence of
communities in the blogspace. Interesting properties have been recently studied
and discovered on evolving networks, such as shrinking diameters, and densifica-
tion power law. As an example, the authors in [26] discover that in most of these
networks the number of edges grows superlinearly in the number of nodes over
time and that the average distance between nodes often shrinks over time. In
literature, many models capturing these properties have been proposed; an in-
teresting survey is presented in [12]. In [23], Kumar et al. consider the evolution
of structure within large online social networks. Specifically, they propose some
measures exposing a segmentation of the networks into three regions: singletons,
which do not participate in the network; isolated communities, which display
star structure; and a component which persists even in the absence of stars.
Three more recent works are [25, 28, 34]. In the first, Leskovec et al. present a
detailed study of network evolution. They analyze four networks with temporal
information about node and edge arrivals and use a methodology based on the
maximum-likelihood principle to show that edge locality plays a critical role in
evolution of networks. In the second, McGlohon et al. study the evolution of
connected components in a network. In [34], the authors propose a novel model
which captures the co-evolution of social and affiliation networks. The notion of
temporal graph has been studied in [20]. The main aim of this paper is to study
how the basic properties of graphs change over time. A similar setting is used
in [21] where Kossinets et al. study the temporal dynamics of communications.
They define a temporal notion of “distance” in the underlying social network
measuring the minimum time required for information to spread between two
nodes.

Other studies related to the temporal analysis in a network propose the
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study of aspects of the temporal evolution of the Web [8, 14, 17, 7]. In [8] au-
thors study the rate of change of Web pages. In particular, they collected pages
over an average interval of 37 days and base on their study on the recording
of the last-modified timestamp and the downloading time of pages. Cho and
Garcia-Molina in [14] propose estimators for the frequency of change of Web
pages useful to improve web crawlers, web caches and to help data mining. The
study presented in [17] models the persistence of both URLs and Web content
finding that most URLs have a short life, while a minor fraction of pages persist
for long periods of time. Bordino et al. in [7] analyze the Uk Web graph to
check whether the information contained in the graph is reliable and study some
aspects of the temporal evolution of this graph. In [32], Sun et al. deal with
a stream of graphs, focusing on the changes within the community structure
that occur over time. In order to detect changing points, their search is driver
by the Minimum Description Length principle. However, their exploration can
not be browsed with different temporal granularity, and they do not provide a
method for the interpretation of the different eras. In [33], Tong et al. propose
a method for automatically grouping time stamps into clusters as well as spot
the abnormal timestamps. For each cluster/abnormal timestamp, it allows to
output the selective subsets of events/entities/attribute values as their interpre-
tations. This approach is based on a graph representation for the datasets at
different timestamps and on the exploration of the proximity among different
nodes. They also propose an approach for efficiently analyze multiple scales. In
this case, the key idea is to explore the “smoothness” among different scales.

For our temporal analysis we perform hierarchical clustering: a survey on
existing clustering approaches can be found in [3].

3 Problem Definition

We are given an evolving network G, whose evolution is described by a tem-
porally ordered sequence of temporal snapshots T = {t1, t2, . . . , tn}, where ti
represents the i-th snapshot. T can be either computed on the sets of nodes,
i.e. each snapshot ti is represented by the set of nodes involved, or on the sets
of edges, i.e. each snapshot is represented by the set of edges in it.

Based on a dissimilarity measure d : (ti, ti+1) → [0, 1], we want to find a
hierarchical clustering on T , returning clusters Ci = {tj , . . . , tj+k}, with j ≥ 1,
and 0 ≤ k ≤ n− j.

Each cluster represents then an era of evolution. Due to the global evolution
of real-life networks, we do allow alterations of the structure of the network
among snapshots of the same cluster, as long as they follow a constant trend.
As soon as this trend changes, we want to set the corresponding snapshot as
the first of a new era, i.e. a turning point. The stronger is the change, the
higher should be the dissimilarity of that snapshot with the previous one. The
definition of the dissimilarity function should reflect this intuition.

We then want to assign to each cluster Ci a set of labels describing the
represented era. This step adds a semantic dimension to our framework.
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4 Framework for temporal analysis

In this section we describe the key steps composing our framework: (a) defining
and computing a dissimilarity measure on the temporal snapshots; (b) merg-
ing the snapshots into clusters; (c) assigning semantics to the clusters based on
frequent labels. This section provides the theoretical foundations of our frame-
work, while next section shows the experiments performed on real networks.
Both the sections are organized following the above steps.

4.1 Dissimilarity

In order to perform clustering, the first step is to define a measure of dissimilarity
among elements that we want to cluster. In our setting, a simple way to do this
is to use the Jaccard coefficient, to measure the correlation among the snapshots
of the network. In a generic network, we can easily apply this coefficient to either
two sets of nodes or two sets of edges, where each set corresponds to a temporal
snapshot of the network. The coefficient would then tell us how each snapshot
is correlated to the previous one, helping in detecting turning points along the
evolution. As we show later in the paper, clustering temporal snapshots actually
corresponds to perform a segmentation of the sequence of the snapshots, thus
we are interested only in computing this Jaccard coefficient for every pair of
consecutive snapshots. Note that the Jaccard coefficient could be computed
between any pair of sets, thus corresponding also to non-consecutive snapshots.
We are, however, not interested in a two-dimensional clustering of its values,
which would lead to eras formed by potentially non-consecutive years; rather
we want to perform monodimensional clustering of the temporal evolution of
the Jaccard. In the experimental section we also show how, for the networks we
use, this intuition is also supported by the values of the Jaccard: every snapshot
is more correlated with its precedent and consecutive ones, than with any other
else, justifying eras formed by consecutive snapshots.

Many real-life networks are characterized by a global evolutionary trend,
then if we plot the Jaccard coefficient for each snapshot, we shall see a global
trend, characterized by an almost constant slope of the Jaccard coefficient plot,
alternated by (moderate to high) changes of this slope. An immediate way to
define starting point of new eras is to detect the snapshots corresponding to these
changes. This could be done by computing the second derivative of the Jaccard
and finding values different from zero. However, the Jaccard is continuous but
not derivable exactly in the points we need. To overcome this problem, we
consider an approximation of the second derivative defined as follows. We take
triples of consecutive years, and trace the segment that has, as endpoints, the
Jaccard computed for the first and the third snapshot. If the middle point is
distant from the segment, the corresponding snapshot should be considered as
the start of a new era. The Euclidean distance between the middle point and
the segment also gives us a quantitative analysis of how important is the change:
the higher the distance, the stronger the change.
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Definition 1 Given a temporal snapshot tj, we define the following measure:

sN (tj) =
|cN (tj)− (m× j)− q|√

(1 + (m2))

where m =
cN (tj−1)−cN (tj+1)

tj−1−tj+1
, q = (−(j + 1) × m) + cN (tj+1), and cN (tk) =

|Nk−1∩Nk|
|Nk−1∪Nk| is the Jaccard coefficient computed on the node sets.

Defining sE , which is the counterpart computed on the set of edges, requires
to consider cE instead of cN , where cE is the Jaccard computed on the edges.

However, this measure takes, formally, only one snapshot as input, thus it
is not intuitive to use as basis for a clustering methodology. In order to tackle
this problem, we define a dissimilarity between any two snapshots as follows.

Definition 2 Given an ordered sequence t1, t2, . . . , tn of temporal snapshots of
a network G, the dissimilarity between any two snapshots ti and tj computed on
their node sets is defined as

dN (ti, tj) =

{
sN (tmax(i,j)) if |i− j| = 1
undefined otherwise

Defining the similarity on the edges dE requires to consider sE instead of sN .
The reason of considering only subsequent snapshots is explained by looking at
Figure 1: points in the timeline that are adjacent are found to be significantly
more similar than distant points. We discuss further on this in Section 5.

Moreover, this dissimilarity measure allows for a straightforward hierarchical
clustering: an higher dissimilarity corresponds to a stronger separation between
two consecutive eras. This means that by setting a fixed threshold, we can
draw a dendrogram of the hierarchical clustering, driven by this dissimilarity as
a criterion for merging two consecutive clusters in a bigger one. Note that the
hierarchy among clusters permits to analyze the eras with a different granularity,
allowing different sensibility of the framework to the changes of the network
structure.

4.2 Hierarchical clustering

Having defined a measure of dissimilarity, we are now ready to group together
our snapshots into clusters, starting from single-member ones, and then merging,
driven by increasing values of dissimilarity.

In hierarchical clustering, when merging clusters, there are various main
approaches followed in the literature to define the distance between two clusters:
the maximum distance between any two points belonging to the two clusters
(complete linkage), the minimum (single linkage), the average (average linkage),
the sum of all the intra-cluster variance, and so on.

Given two clusters Ci = {t1, t2, . . . , tk} and Cj = {tk+1, tk+2, . . . , tk+p}, in
order to define the distance between two clusters, we shall first compute all the
distances between every pair (ti, tj), with 1 ≤ i ≤ k and k + 1 ≤ j ≤ k + p.

However, according to Definition 2, only one pair of snapshots has a dissimi-
larity defined: (tk, tk+1). At this point, we use this dissimilarity as inter-cluster
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distance. As one can see, taking the only available dissimilarity value as distance
between clusters actually corresponds not only to both the complete linkage and
the single linkage, but also to the average. In our case, thus, the three of them
are identical.

4.3 Semantic enrichment of clusters

Once we have computed the cluster hierarchy, we want to add a description of
every era. In order to do so, in analogy with the TF-IDF approach used in
the Information Retrieval literature [31], we label each cluster with the node (or
edge, or a property of it), that maximizes the ratio between its relative frequency
in that cluster, and its relative frequency in the entire network. This strategy
may produce several values equal to 1 (identical numerators and denominators).
In order to discern among these cases, we weight the numerator by multiplying
it again for the relative frequency in the cluster under analysis. In this way,
we give more importance to 1s deriving from nodes (or edges) with a higher
number of occurrences in the cluster.

With this frequency based strategy, we are assigning labels that truly char-
acterize each cluster, as each label is particularly relevant in that cluster, but
less relevant for the entire network.

One important caveat in this methodology is what to take as label for the
edges. In fact, while for the nodes it is straightforward to consider the identity
of the corresponding entity of the network as candidate label, the edge expresses
a relationship with a semantic meaning, thus each network requires some effort
in defining exactly which label could be applied to a cluster computed on edges.
For example, in a co-authorship network, where two authors are connected by
the papers that they have written together, a possible strategy is to take every
keyword in the title of the papers as possible label. In the experimental section
we show three different sets of properties used as labels for our networks.

4.4 Complexity

The entire framework requires to compute several Jaccard indexes, the dissimi-
larity measure and the frequencies of the labels. The computation of the Jaccard
between two sets A and B requires O(|A|+ |B|). Thus, when computed on the
sets of nodes and edges, for each network with n snapshots, we have a com-
plexity of O(

∑i<n
i=1 (|Ni|+ |Ni+1|) +

∑i<n
i=1 (|Ei|+ |Ei+1|)), where Ni is the set

of nodes of the ith snapshot, and Ei is the set of edges of the ith snapshot. To
this, we have to add O(2n) to compute the dissimilarities on both nodes and
edges. We then have to add O(n − 1) for merging the clusters. Given W the
multiset of node and edge labels, we finally have to add O(|W |) to assign labels
to clusters. To summarize, for each network, we have a total complexity of

O(

i<n∑
i=1

(|Ni|+ |Ni+1|) +

i<n∑
i=1

(|Ei|+ |Ei+1|) + 2n + n− 1 + |W |)
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= O(

i<n∑
i=1

(|Ni|+ |Ni+1|) +

i<n∑
i=1

(|Ei|+ |Ei+1|) + |W |)

= O(|N |+ |E|+ |W |),

where N is the multiset1 of all the nodes appearing in any of the snapshots and
E is the multiset of all the edges appearing in any of the snapshots, which leads
to a scalable framework.

5 Experiments

As stated previously, we made use of three different sources for building our
networks.
DBLP. From this bibliographic database2, we created a co-authorship graph
for the years 1955-2007, where each node represents an author and each edge a
paper written together by the two connected authors. We then considered each
year as temporal snapshot of DBLP, generating then 53 snapshots. In each
snapshot we put only the nodes or the edges appearing in the corresponding
year, thus not following a cumulative approach. The total number of resulting
nodes was 582,179, with a total of 2,555,850 edges.
IMDb. From the Internet Movie Database3, we created a collaboration graph
for the years 1899-2010, where each node represents a person who took part in
the realization of a movie (directors, cast, song writers, and so on), and two
persons are connected if they participated to the realization of the same movie.
We considered each year as temporal snapshot, generating then 112 snapshots.
As for DBLP, the snapshots are non-cumulative, for a total number of 57,457
nodes and 13,047,319 edges.
GTD. From this database of global terrorism4, we created a group-group graph
for the years 1969-2008, where each node represents a terrorist group or organi-
zation, and two groups are connected if they participated in a terrorist attack to
the same country (note that the two groups only attacked the same country, but
they do not need to have collaborated to the attack in order to be connected).
We then considered each year as temporal snapshot, generating 40 snapshots.
As for DBLP, the snapshots are non-cumulative, and we ended up with 2,279
nodes and 31,843 total edges.

For each of the networks we also built synthetic null models reflecting the
global statistics of the network, in terms of number of snapshots and number of
edges per snapshot. We created two different null models for each network:
Random. Nodes and edges are placed at random, only the statistics of the
original networks were preserved.
Preferential attachment. While preserving the number of snapshots and the
number of edges per snapshot, each snapshot is created following the preferential
attachment model[2], i.e. the probability of connecting two nodes is directly

1We have multisets because every node or edge can be found in more than one snapshot
2http://dblp.uni-trier.de
3http://www.imdb.com
4http://www.start.umd.edu/gtd
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proportional to their degrees. Please note that the generator is ran separately
for each snapshot.

All the experiments where performed on a server equipped with a dual Xeon
@ 3.06Ghz, 8GB of Ram, running the Ubuntu 8.04 Server 64bit operating sys-
tem. In line with the theoretical complexity shown in the previous section, each
network required less than ten minutes of total computation, and less than 500
megabytes of ram to be processed, despite the size of the networks.

5.1 Jaccard Coefficient

Figures 2(a,c,e) show the Jaccard computed on both the node and the edge sets.
These plots report a general increasing behavior of the Jaccard during time in
DBLP, both on nodes and on edges, broken by short series of years in which
people acted in counter-trend. On the other hand, for the other two networks
the temporal behavior seems not to follow a specific trend, while, in particular,
GTD presents a hole of two years in the history of the network.

Two questions might be raised on the effectiveness of following a Jaccard-
based approach for clustering eras: what would the Jaccard computed on non
consecutive snapshot tell us? Are we dealing with some random or real phe-
nomena?

We start answering the first question by plotting the coefficient computed
for every pair of snapshots: Figure 1 shows that the Jaccard decreases when
computed between snapshots more distant in time. As stated in the previous
section, this observation justifies a dissimilarity measure that takes into account
only consecutive snapshots, as two distant snapshots are not likely to be similar,
thus they will belong to different clusters. Temporal segmentation is then a
good model for clustering real-life evolving networks, which is a consideration
well accepted in the literature regarding evolving networks [4, 26].

Answering the second question requires to compare the knowledge extracted
with our methodology on real and random networks. If such knowledge is sim-
ilar, we might conclude that our methodology is not able to extract any useful,
non-random, information. We then followed an approach which is common in
the network analysis literature [15]: building random networks as null models
and testing the framework on them. In order to do so, we created random and
preferential attachment null models, as stated at the beginning of this section,
and computed the Jaccard on them. As we see in figures 2(a,c,e), the random
component of both the null models makes the framework not meaningful on
them. Note that the lines corresponding to the random and the preferential
attachment networks follow the zero constant. This might be surprising for
the preferential attachment, but we recall that the generator was reset at every
snapshot, thus making two consecutive snapshots randomly correlated.

5.2 Dissimilarity

The second step of the framework requires to compute our dissimilarity on
the basis of the Jaccard coefficient computed on the network. Figures 2(b,d,f)
report the values of the dissimilarity for both the edges and the nodes, for each
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network. As one can see, the quantitative analysis of our dissimilarity measure
is effective: its values have a considerable standard deviation. That is, we can
effectively perform hierarchical clustering finding a well distributed strength of
starting snapshots for new eras of evolution.

Another observation that can be done is that while the Jaccard values com-
puted on nodes or edges show similar trends, stronger differences can be found in
the dissimilarity plots. That is, we expect the eras computed on nodes slightly
differ from the ones computed on the edges.

As last note, we see that in the first years, although not always noticeable
from the Jaccard plots, the dissimilarity spots very unstable behavior. This
could be mainly explained by two considerations: first, at the beginning of the
history of every network, the network structure is still very little, and a change
of a few nodes or edges may result in a strong change of the Jaccard values;
second, even though a network follows one clear model of evolution (DBLP
is well known to follow the preferential attachment model [4, 10]), the model
itself takes a few years to warm up and to be fully functional (note that in the
preferential attachment this means that nodes are still not affected by the aging
effects).

5.3 Hierarchical clustering

We then started to compute the clusters on the sequences of temporal snapshots.
We started from clusters containing only one year and then, driven by the dis-
similarity values computed in the previous step, we merged similar consecutive
clusters, with increasing values of dissimilarity.

Figures 3,4,5,6 report all the dendrograms of the extracted eras for each
network. Note that, due to the large number of snapshots and to the wide
range of values taken by the dissimilarity, we could not plot the dendrograms
with the height proportional to the dissimilarity values itself.

A few considerations can be done by looking at the dendrograms. First, in
all the three networks, as expected by looking at the dissimilarity plots, the first
years tend to form eras by themselves, and this is true both for nodes and for
edges.

Second, while, as we said above, the Jaccard plots of nodes and edges for
each network tend to look similar, and the differences are then emphasized in
the dissimilarity plots, by looking at the shape of the dendrograms, discerning
between eras that coincides for both nodes and edges, and eras that include
different years for the two sets, appears to be easier. For example, look at the
years 2001-2006 in both DBLP nodes and edges: it is easier to see those years
grouped in the same era in the dendrograms in Figure 3 than in the dissimilarity
plot in Figure 2(b). Same discussion for the eras 1995-1997 and 1998-2007 in
the GTD network, that are both similar when comparing nodes and edges, but
for which the dissimilarity plot does not clearly reflect this situation.

Third, while the dendrograms can spot situations as above, they can also
highlight differences in the node and edge evolutions. Take, for example, years
1930-2009 in both nodes and edges in IMDb, as reported in Figure 4 and 5.

10



This era presents very different sub-eras when looking at nodes or edges, and
this is because of the different importance, given during time, to new nodes or
new edges over old ones.

5.4 Semantic enrichment of clusters

As last step in our framework, we computed the labels for each cluster obtained.
We recall that for each cluster Ci we assign the set of the k labels maximizing the
ratio between their frequency in Ci and their frequency in the entire network.
Tables 1, 2 and 3 report a few of the most characterizing labels for some of the
eras of each network. Due to the impressive number of total eras and labels, we
could not report all the labels for all the eras, but instead we chose, for each
network a selection of interesting eras (covering the entire network history), and
a selection of the most representative labels for them. The DBLP keywords were
pre-processed using the Porter’s stemming algorithm [30].

We chose some relatively small eras in order to cover approximately the
entire time span of the dataset. The start and end years of an era were selected
where the inclusion of the following, or preceding, year would have caused the
merging of two eras resulting in a selected period of many years not strongly
correlated each other, according to the dendrogram. Verifying the labels of the
extracted eras provides two benefits: it is useful to evaluate our results, as we
refer to fields in which there is a ground truth about periods, and may lead to
novel points of view about the history of our data sources.

For DBLP, we present the labels for the node and edge eras in Table 1. It is
possible to spot some interesting eras, such as the ALGOL era from 1963 (the
year of one major revision of ALGOL605) to 1970. In the 70s many popular
programming languages were developed, such as C (developed from 1969 to
19736), Prolog (which was born in 1972 from a project aimed not at producing
a programming language but at processing natural languages [16]) and Pascal
(standardized in 19837, and this might explain also its era from 1980 to 1982).

Interesting enough, from 2004 we are witnessing a brand new era, made of
networks and the increasing complexity of web technologies. Node era labels
for DBLP let emerge some other key research results: we can recognize the
huge work made by David Chaum (1985-1991) in the field of cryptography, the
basis of the electronic currency system, culminating in 1990 with the foundation
of his electronic cash company; another example is Raymond F. Boyce, a key
researcher for the development of SQL [13], died in 1974.

For IMDb, we present the era labels in Table 2. It is possible to perform
an analysis at two different granularity levels. At a high level, one may notice
that the keywords for periods before 1975 are very specific and referring to
precise concepts in movie history (such as the sound synchronized to record,
referring to the very first movies with sound, or heimatfilm, such as “Lassie come
home”), while after 1975 keywords are simpler and less specific (love, death,

5http://www.masswerk.at/algol60/report.htm
6http://cm.bell-labs.com/cm/cs/who/dmr/chist.html
7ISO 7185, http://www.pascal-central.com/iso7185.html
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murder, blood). This is due to the fact that the keywords are user-assigned, thus
very old movies are only watched (and tagged) by a niche of expert cinephiles,
while the mass tags recent blockbusters. Note also that the vast majority of
IMDb users are Western and particularly American, thus the keywords are
heavily unbalanced on Hollywood and European industry, disgreaging other
filmographies such as Japan, Hong Kong and the prolific Bollywood. At a lower
level of granularity, our technique is able to spot actual eras or sub-eras of movie
history, such as the “pre code” era (from 1930, the year in which the Motion
Picture Production Code was written, to 1933, when the code become effectively
enforced8).

In IMDb node eras we see the most prolific people in movie industry. Espe-
cially in latter years, counter-intuitively, instead of finding movie stars, which
are involved in leading roles in big productions (thus it is impossible for them
to participate to more than 4-5 movies a year), we see actors that are prolific in
minor roles, or producers (Andreas Schmid, producer from 2004 of movies like
“The Punisher”, “Lord of war” and “Perfume: The Story of a Murderer”, before
stopping his career in 20079), directors (Peter Elfelt, very well known for many
experimental documentary shorts until 190710) and composers. Exceptions to
this rule are the extremely prolific Indian stars like Brahmanandam11, or Hong
Kong superstar Tony Leung Ka Fai, who between 1991 and 1995 appeared in
many movies of the most important Hong Kong authors such as Tsui Hark,
Gordon Chan and Wong Kar Wai.

Finally, consider the eras emerging in GTD dataset, for which we report
the labels in Table 3. It is interesting to note that the 1977-1983 edge era was
dominated by European countries, particularly Italy and France. This period
coincides with the years of activity of the Hyperion School, founded in 1976 in
Paris and whose members were arrested in 1983. Hyperion is considered linked
with many terroristic cells in all Europe, particularly Italy12, whose activities
culminated in 1978 with the kidnapping and assassination of Italian prime min-
ister Aldo Moro by Red Brigades. Also the node era from 1978 to 1981 witnessed
the terror war fought in Italy in this period, by two extremist groups of opposite
philosophy: the Marxist-Leninist group Prima Linea and the neofascist group
Armed Revolutionary Nuclei (NAR). NAR was responsible, among others, of
the 1980 bombing of the Bologna main train station13; Prima Linea had carried
18 out of their 23 assassinations from 1978 to 198114.

It is interesting to note that, among the sets of labels found to be character-

8Mick LaSalle, “Complicated Women: Sex and Power in Pre-Code Hollywood”
9http://www.imdb.com/name/nm1209077/

10http://www.imdb.com/name/nm0253298/
11http://www.imdb.com/name/nm0103977/
12Antonio Ferrari, “In teleselezione dalla Francia gli ordini ai terroristi italiani?”, Corriere

della Sera 26 aprile 1979
1385 victims, ref. Davies, Peter, Jackson, Paul (2008). “The far right in Europe: an

encyclopedia”. Greenwood World Press, p. 238
14Presidenza della Repubblica, “Per le vittime del terrorismo nellItalia repubblicana: giorno

della memoria dedicato alle vittime del terrorismo e delle stragi di tale matrice”, 9 maggio
2008 (Rome: Istituto poligrafico e Zecca dello Stato, 2008, ISBN 978-88-240-2868-4)
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istic for an era, there are only a few of them which were somehow “popular”.
This might seem a problem of the methodology, but it is essentially due to the
frequency-based approach. In the future, we plan to investigate the possibility
of comparing several different alternatives, based, perhaps, on PageRank, Hits,
and other measures of centrality.

6 Turning points and link prediction

As we said from the beginning, in our problem we do allow evolution within
one specific era, while two subsequent eras are characterized by different paces
at which the evolution takes place. Building up a model of network evolution
is the task at the basis for link prediction, i.e., the problem of deciding, with a
certain score, whether two nodes will link in the future [27]. There are several
studies regarding link prediction, and most of them rely on a underlying model
of network evolution [24, 1, 2, 18, 9, 26, 29, 19]. However, not all the models fit
all the different types of networks, and most predictors perform well on certain
networks, but relatively bad on others. To cope with this, recently the authors
of [4, 10] introduced a supervised approach based on extracting graph evolution
rules, i.e., local frequent subgraphs expressing evolution. The model of evolution
itself is there learned from the data, by means of the extraction of those rules,
that are afterward used to predict the evolution of the network. In contrast
with the previous approaches, this approach allows to predict also when then
new links will form.

However, to the best of our knowledge, all of the current approaches assume
that the model of evolution is static, i.e., there is one rule (Jaccard, Common
Neighbors, Adamic-Adar, Forest Fire, and so on) or a set of them (the complete
set of rules extracted by GERM), governing the creation of new links, that do
not change over time.

This is in contrast with our framework, where we detect moments along
the evolution of a network in which the underlying evolution rule changes pace.
According to this, we could state that the arrive of a new, sudden, turning point,
may invalidate future predictions, as the evolution would change pace.

A question then arises: can we somehow forecast the arrive of a new era?
The answer would probably change the way we currently see the link prediction
problem, for the reasons we stated above.

While link and evolution prediction are not the main focus of this paper,
in this section we would like to pose the basis for future work in which we will
be trying to solve the link prediction problem taking eras into account. In this
section, instead, we try to answer two different questions: do the temporal series
formed by our dissimilarities follow any pattern? Is there a way to forecast the
subsequent values of the dissimilarities?

In the rest of this section we try to answer the above questions, by means of
statistical analysis of time series, and, in particular, by means of autoregressive
models.
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6.1 Time series analysis by autoregressive models

An autoregressive model (AR) is a type of random process often used to forecast
future values of time series representing natural and social phenomena. The
notation AR(p) refers to the autoregressive model of order p, defined as

Xt = c +

p∑
i=1

ϕiXt−i + εt

where ϕ1, . . . , ϕp are the parameters of the model, c is a constant and εt is white
noise. Many authors omit the constant for simplicity.

We refer to [11] for a complete introduction to time series analysis, and how
to perform prediction on them based on autoregressive models. We used the
tseries package under the R statistical software15 to fit autoregressive models
on our dissimilarity series, and to perform prediction on them.

6.2 Forecasting dissimilarities

Figure 7 reports, for each network, five new values of dissimilarities forecast both
on the edges and the nodes. These values were obtained by fitting autoregressive
models as explained above, and then using the fits to forecast subsequent values.
What we see in the figure is that, while in IMDb the model is forecasting
relatively low values of the dissimilarities, this is not true for the other two
networks, and in particular for GTD. The intuition behind these plots is that, if
the forecast values are low, we are not expecting a sudden change of era in the
near future, i.e., a link predictor trained on the past evolution of the network,
may perform well for the near future. On the other hand, in networks where
the forecast values are high, as in GTD - particularly for the nodes -, we do
expect a new, well distinct, era in the next few years, with this meaning that
the results of a link predictor based on the previous history of the network may
be not accurate, due to the expected change of evolution pace.

The above might suggest a new way of looking at the link prediction problem,
where the basic rules of evolution are supported by a certain confidence in the
prediction given also by our temporal analysis of the network evolution. In the
future, we plan to investigate the possibility of building such solution for the
link prediction problem, based on our clustering framework.

7 Conclusions and Future Work

We have proposed a framework for the discovery of eras in an evolving social
network. Based on a dissimilarity measure derived from the Jaccard coefficient,
we have presented a methodology to perform hierarchical clustering of the tem-
poral snapshots of a network. We have applied our methodology to real-life data
and null models, showing the effectiveness of our approach. The semantic layer
provided by the cluster labeling allows also to give an interpretation of the eras
found. We believe that our work completes the wide literature in the analysis of

15http://www.r-project.org
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evolving networks, and raises questions that do not have received considerable
attention so far, providing also a possible way of answering them.

Our methodology can also put the link prediction problem under a different
light, and we believe that building a predictor that takes into account also the
history of eras of the network based on our findings deserves further effort and
is the basis for future work. Another future research direction is to compare
the results obtained by our labeling methodology, with different measures of
centrality of the labels into the network, to try to explain the relationships
between frequent labels (as we have), with “famous” labels (actors, researchers,
and so on) that one might expect. Finally, one consideration regarding the
evaluation of clusters. One typical question in clustering is how to find the
optimal cut of the dendrogram. In our work, this translates into finding a
measures to evaluate the best temporal granularity for our analysis. To this
purpose, we plan to investigate the possibility of finding the equivalent of the
modularity measure for the Community Discovery problem, to be seen as a
measure returning the most informative temporal granularity of analysis.
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DBLP - Edge labels
Start End Labels
1956 1962 tunnel diode, q-d-algorithm, megabits-sec, four megacycles, bounded

transition
1963 1970 prediscuss, algol, machine to man, ssdl, tree manipulation
1971 1973 lr0, word functional, optimal, virtualize, syntax analysis
1975 1979 data, language, program, computer, codasyl
1980 1982 pascal, language, database, data, micro-computer
1983 1985 prolog, database, online, abstract, expert
1987 1991 parallel, program, logic, abstract, database
1992 1996 parallel, program, logic, object oriented, computer
1997 1999 model, parallel, design, distributed, image
2001 2003 model, data, network, design, image
2004 2005 network, model, algorithm, web, data

DBLP - Node labels
Start End Labels
1957 1959 Yu. A. Shreider, I. Y. Akushsky, Howard H. Aiken, D. G. Hays, W. L.

van der Poel
1960 1963 Calvin C. Elgot, W. D. Frazer, Roger E. Levien, Robert O. Winder,

Lorenzo Calabi
1964 1972 R. L. Beurle, Sheila A. Greibach, Rina S. Cohen, Karl K. Pingle, James

L. Parker
1973 1976 Raymond F. Boyce, Michael Ian Shamos, Matthew M. Geller, Louis

Pouzin, Irving L. Traiger
1977 1982 Peter Raulefs, Gary G. Hendrix, Helmut K. Berg, Nathan Goodman, S.

Bing Yao
1983 1984 Hans Bekic, Gunter Spur, Werner Frey, Frank-Lothar Krause, Ashok K.

Thareja
1985 1991 Walter Ameling, Ehud Y. Shapiro, David Chaum, Setrag Khoshafian,

David W. Stemple
1992 1996 Robert K. Brayton, Alberto L. Sangiovanni-Vincentelli, Terence C. Fog-

arty, Janak H. Patel, Martin Kummer
1997 2000 Miodrag Potkonjak, Bruce Schneier, Christopher J. Taylor, Alok N.

Choudhary, Prithviraj Banerjee
2001 2006 Mahmut T. Kandemir, Zhaohui Wu, HongJiang Zhang, Wei-Ying Ma,

Wen Gao

Table 1: Era labels on both DBLP edges and nodes
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IMDb - Edge labels
Start End Labels
1900 1907 spanish-american-war, early-sound, america’s-cup, synchronized-to-

record, trick-film
1908 1909 synchronized-to-record, film-d’art, william-shakespeare, early-sound, te-

deum
1910 1912 trick-photography, broncho-billy, animal-actor, melodrama, law-enforcer
1913 1915 broncho-billy, mister-jarr, universal-ike-series, americana, ham-and-bud-

series
1917 1929 melodrama, society, mutt-and-jeff, fable, world-war-one
1930 1933 pre-code, bimbo-the-dog, talkartoon, flip-the-frog, two-reeler
1935 1941 1930s, gunfire, b-movie, beautiful-woman, stock-footage
1942 1954 beautiful-woman, 1940s, usa, world-war-two, series
1956 1957 beautiful-woman, heimatfilm, 1950s, mr-magoo, sportscope
1958 1963 peplum, loopy-de-loop, modern-madcaps, independent-film, nudie-cutie
1964 1965 swifty-and-shorty, beautiful-woman, independent-film, nudie-cutie, pe-

plum
1966 1972 female-nudity, independent-film, spaghetti-western, beautiful-woman,

hippie
1973 1974 female-nudity, blaxploitation, hoot-kloot, grindhouse, martial-arts
1975 1977 independent-film, erotic-70s, poliziottesco, italian-sex-comedy, naziploita-

tion
1979 1989 nudity, cult-favorite, murder, electronic-music-score, violence
1990 1993 murder, sequel, male-female-relationship, family-relationships, police
1994 1999 independent-film, female-nudity, gay-interest, love, friendship
2000 2002 independent-film, gay-interest, friendship, female-nudity, flashback
2004 2008 love, death, independent-film, blood, family-relationships

IMDb - Node labels
Start End Labels
1902 1907 Alf Collins, Peter Elfelt, Lucien Nonguet, Arthur Gilbert, Alice Guy
1909 1915 Siegmund Lubin, Arturo Ambrosio, William Nicholas Selig, Pat Powers,

David Horsley
1916 1922 John Randolph Bray, Matsunosuke Onoe, Burton Holmes, Bud Fisher,

William Randolph Hearst
1923 1929 Abe Stern, Julius Stern, Jack White, Hal Roach, Paul Terry
1930 1931 Arthur Hurley, Leroy Shield, James Mulhauser, Amadee J. Van Beuren,

Albert H. Kelley
1932 1938 Edward LeSaint, Earl Dwire, Dennis O’Keefe, Harry Bowen, Fred Parker
1939 1946 John Tyrrell, Emmett Vogan, Cyril Ring, Jack Gardner, John Dilson
1947 1952 Sam Buchwald, Edward Selzer, Stanley Wilson, Izzy Sparber, Marshall

Reed
1953 1963 Milt Franklyn, Ahmet Tarik Teke, Nicholas Balla, Seymour Kneitel, Ju-

lian Biggs
1966 1975 Sung-il Shin, David H. DePatie, Luigi Antonio Guerra, Adoor Bhasi,

Jeong-geun Jeon
1976 1980 Richard Lemieuvre, Cyril Val, Dominique Aveline, John Seeman, Peter

Katadotis
1981 1984 George Payne, Herschel Savage, Ilayaraja, Mona Fong, Paul Thomas
1985 1990 Amrish Puri, Lily Y. Monteverde, Yunus Parvez, Shui-Fan Fung, Tony

Fajardo
1991 1996 Brahmanandam, Ilayaraja, Floyd Elliott, Milind Chitragupth, Tony Le-

ung Ka Fai
1997 2003 Brahmanandam, Johnny Lever, Phil Hawn, Yiu-Cheung Lai, Simon Lui
2004 2007 Venu Madhav, Brahmanandam, Himesh Reshammiya, Andreas Schmid,

Suneel
2008 2009 Kevin MacLeod, Jose Rosete, Suraaj Venjarammoodu, Brian Jerin, Moby

Table 2: Era labels on both IMDb edges and nodes
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GTD - Edge labels
Start End Labels
1971 1975 United States, Northern Ireland, West Germany (FRG), France, Ar-

gentina
1977 1983 Italy, France, Spain, El Salvador, Guatemala
1984 1988 Lebanon, Colombia, Sri Lanka, France, Peru
1989 1991 India, Colombia, Israel, Myanmar, Lebanon
1992 1994 India, Bangladesh, Germany, West Bank and Gaza Strip, Venezuela
1995 1997 India, Bangladesh, Pakistan, Indonesia, Colombia
1998 1999 Greece, India, Timor-Leste, Northern Ireland, Kosovo
2000 2002 India, West Bank and Gaza Strip, Israel, Russia, Macedonia
2003 2005 Iraq, India, West Bank and Gaza Strip, Saudi Arabia, Pakistan
2006 2007 Iraq, India, Pakistan, Nigeria, Sudan

GTD - Node labels
Start End Labels
1971 1975 Black September, National Front for the Liberation of Cuba

(FLNC), Weatherman, Secret Cuban Government, National Integration
Front(FIN)

1976 1977 Communist Combat Unit, Armed Communist Struggle, Baader-Meinhof
Group, Black Order, Che Guevara Brigade

1978 1981 Armenian Secret Army for the Liberation of Armenia, Armed Revolu-
tionary Nuclei (NAR), Right-Wing Extremists, Spanish Basque Battalion
(BBE), Prima Linea

1982 1987 Armenian Secret Army for the Liberation of Armenia, Abu Nidal Organi-
zation (ANO), Anti-terrorist Liberation Group (GAL), M-19 (Movement
of April 19), Action Directe

1989 1991 Moslem Janbaz Force, Bhinderanwale Tiger Force of Khalistan (BTHK),
Popular Militia (Colombia), Kurdish Dissidents, Death to Bazuqueros

1992 1993 Khasi Students Union, Jharkhand Tribal Forces, Revolutionary Security
Apparatus, Allah’s Tigers, Ikhwan-ul-Muslimeen

1995 1997 Kuki tribesmen, Jammu and Kashmir Islamic Front, Harkat ul Ansar,
Tamil Nadu Liberation Arm, Al Faran

1998 2000 Communist Party of India Marxist-Leninist, Vishwa Hindu Parishad
(VHP), Individual, Shiv Sena, Mazdoor Kisan Sangram Samiti (MKSS)

2002 2005 Al-Mansoorian, Kuki Revolutionary Army (KRA), Jaish-e-Mohammad
(JeM), Rashtriya Swayamsevak Sangh, Tawhid and Jihad

Table 3: Era labels on both GTD edges and nodes
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Figure 1: The Jaccard correlation computed among all the snapshots, on both
edges and nodes
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Figure 3: Eras on both edge and node evolutions in DBLP
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Figure 4: Eras in IMDb edge evolution
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Figure 5: Eras in IMDb node evolution
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Figure 6: Eras on both edge and node evolutions in GTD
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Figure 7: Forecasting eras on dissimilarities via autoregressive models
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