Evaluating Structural Connectivity in Multiple Networks

Michele Coscia

Harvard University

NetSci - June 3rd, 2013

Structural Connectivity

Degree-related measures are very useful in complex networks

Does it change significantly in multiple networks?

Do we add a new degree of freedom for new degree-related measures?

My Degree: 9
My Neighbors: 4
Neighbors in at least 3 networks: 1
Neighbors in the "Friendship" network: 2

Question \#1

How many neighbors will I lose if we remove one network?

If "Financial" goes down, we lose one neighbor
If "Work" goes down, we lose three edges but no neighbors
"Financial" looks very important, even if it had only that one edge

Formally:

$$
\begin{gathered}
\text { NeighborsXOR }(v, D)= \\
\left\lvert\,\left\{u \in V \left\lvert\, \frac{\exists d \in D:(u, v, d) \in E}{} \wedge \nexists \nexists d^{\prime} \notin D\right.:\left(u, v, d^{\prime}\right) \in E\right\}\right.
\end{gathered}
$$

Counting the edges appearing in that network
Discarding the ones also appearing in other networks

Question \#2

What is the most relevant network for a node (given different relevance criteria)?

Criterion \#1

The ratio of neighbors connected in that network

We call it Dimension Relevance:

$\operatorname{DimRelevance}(v, D)=\frac{\operatorname{Neighbors}(v, D)}{\operatorname{Neighbors}(v, L)}$

DimRelevance(Me, Financial) $=3 / 4$
DimRelevance(Me, Work) $=3 / 4$
DimRelevance(Me, Friendship) $=2 / 4$
DimRelevance(Me, Sport) $=1 / 4$

Criterion \#2

Weight the \# of neighbors on the number of other networks in which I can connect to them

DimRelevance $_{W}(v, D)=\frac{\sum_{u \in \operatorname{NeighborSet}(v, D)} \frac{n_{u v d}}{n_{u v}}}{\text { Neighbors }(v, L)}$

DimRelevance $($ Me, Financial $)=1.75 / 4$
DimRelevanceW(Me, Work) $=1.25 / 4$
DimRelevanceW(Me, Friendship) $=0.75 / 4$
DimRelevanceW(Me, Sport) $=0.25 / 4$

Criterion \#3

The ratio of neighbors lost if the network disappears

We call it Dimension Relevance XOR:

A Nice Property

DimRelevance $>=$
DimRelevanceW

$$
>=
$$

DimRelevanceXOR

Why do we care?

Query contextualization
Term-Term network from AOL query logs
Networks: Rank of the URL clicked by the user
A-Social User Behavior
User-User network from Flickr
Networks: Friendship, Comment, Favorite, Tag
Science Jumpers
Co-authorship network from DBLP
Networks: Year of the collaboration

AOL

In Flickr:
Users appearing only in the "Friendship" networks

In DBLP:
Authors changing their neighborhood from one year to the other

Capturing network interplay

DR Distributions in the original network

DR

MultidimRandom (Only the \# of Nodes/Edges are preserved)

DR

Multidim Preferential
Attachment (rich-get-richer with same \# of Nodes/Edges)

Multidim Jaccard (correlations between dimensions preserved)

Question \#3

Are there networks that shows the very same patterns of connections?

Network Correlation

The Jaccard coefficient over the nodes with at least one edge in the network; or over the edges themselves

Application: Network Eras

Application: Network Eras

Conclusion

Network connectivity is much different in multiple networks

We have an additional degree of freedom

Advanced analysis can be performed even with measures as simple as the degree

Bibliography

Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, Dino Pedreschi: Foundations of Multidimensional Network Analysis. ASONAM 2011: 485489

Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, Dino Pedreschi: The pursuit of hubbiness: Analysis of hubs in large multidimensional networks. J. Comput. Science 2(3): 223-237 (2011)
Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, Dino Pedreschi: Evolving networks: Eras and turning points. Intell. Data Anal. 17(1): 27-48 (2013)
M. Schich and M. Coscia: Untangling the Complex Overlap of Subject Themes in Classical Archaeology. MLG @ KDD, (2011)

Thank you

Questions?

