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Abstract—In recent years we witnessed the explosion in the
availability of data regarding human and customer behavior in
the market. This data richness era has fostered the development
of useful applications in understanding how markets and the
minds of the customers work. In this paper we focus on
the analysis of complex networks based on customer behavior.
Complex network analysis has provided a new and wide toolbox
for the classic data mining task of clustering. With community
discovery, i.e. the detection of functional modules in complex
networks, we are now able to group together customers and
products using a variety of different criteria. The aim of this
paper is to explore this new analytic degree of freedom. We
are interested in providing a case study uncovering the meaning
of different community discovery algorithms on a network of
products connected together because co-purchased by the same
customers. We focus our interest in the different interpretation
of a partition approach, where each product belongs to a
single community, against an overlapping approach, where each
product can belong to multiple communities. We found that
the former is useful to improve the marketing classification of
products, while the latter is able to create a collection of different
customer profiles.

I. INTRODUCTION

Due to the advancements in data storage, computational
power and data analysis techniques, in the last years authors in
many disciplines have shifted their attention from theoretical
models to data-driven problems. This is the so-called “Big
Data” paradigm, in which the vast amount of data, previously
unavailable, has uncovered novel problem definitions and
enlarged the set of hypotheses and theories that can be tested.

In this paper we focus in particular on the augmented
quality and quantity of information that we can collect about
customer behavior. Using the tracking abilities of customer
fidelity cards, a supermarket chain can analyze the behavioral
patterns of its customers: where do they come from? What
combination of products are frequently bought by certain
customers? Is it possible to quantify the diversity of needs
of different customers? These and many other questions can
now be answered.

As a consequence, a number of applications and techniques
have been applied to customer segmentation and analysis. For

example, some authors developed a framework to predict in
which shop a customer will buy a given product, given the
customer’s residence and its degree of sophistication [1].

A particular fruitful technique applied to big data and cus-
tomer behavior is complex network analysis. Two products can
be connected if they are frequently co-purchased by the same
customers, allowing a complex structure of products to emerge
[2]. The topological properties of this complex structure are
informative about how customers perceive product relations,
just like the collaborative filtering of Amazon and Netflix,
but on a broader product typology set. For instance, sets of
products may be very densely connected the one with the
other, because customers always buy them together.

The task of finding sets of nodes densely connected in a
complex network is known as “community discovery” [3].
Community discovery is one among the most prolific sub-
branches of complex network analysis. Hundreds of papers
have been written on the subject, and dozens of algorithms
have been proposed to solve it. As a result, the scientific
community has come to agree that there is no unique solution
to community discovery, given the many different possible
definitions of “community” that can be accepted in different
applications.

In particular, one of the most important distinction between
community discovery algorithms is about a node’s membership
to a community [4]. In some methods, a node is forced
to belong only to the community it is closest to. This is
a partition approach to community discovery (often called
“hard clustering”, or “disjoint community discovery”). In other
methods, a node may be free to join as many communities as
necessary. If an algorithm allows this type of output, then it is
said to return overlapping communities (also known as “soft
clustering” or “community coverage”).

Historically, overlapping algorithms were developed as a
critique to the partition approach. The theory was that “actual
communities” are overlapping, and therefore the partition
approach was obsolete. Our point is that the two approaches
are not mutually exclusive. In the same context, they yield
different results because the problem they address is different



and there is no “better” or “worse” method.
The aim of this paper is to investigate the typology of

results that different approaches to community discovery can
achieve while analyzing a complex network of products. When
applied to a network created connecting products if they are
co-purchased by the same customers, community discovery
will return groups of products that are “related” to each other.
Our aim is to understand what “related” means under different
community definitions, in particular when our aim is to find
a community partition vis-à-vis when our aim is to find an
overlapping community coverage.

To prove our point, we collected data about more that 24
thousand products, co-purchased by a million customers in
more than 80 millions shopping sessions from four regions
in the center of Italy. Using their purchases, we created a
product-product network connecting products if they were
co-purchased during the same shopping session. We then
applied two state-of-the-art community discovery algorithms
on this structure: one yielding a disjoint community partition
(Infomap [5]), the other yielding an overlapping community
coverage (Hierarchical Link Clustering [6]).

Our results confirmed that the different community defini-
tions returned two very different sets of results. We observed
that there is no clear ranking in the quality of these results,
i.e. there is no clear way to determine which algorithm per-
formed “better”. On the other hand, both the partition and the
overlapping approach returned results that can be utilized for
different tasks. The disjoint communities proved to be useful
for the redefinition of the product marketing classification. The
overlapping communities, instead, represent specific customer
behaviors, and therefore provide useful data for the task of
customer profiling.

To sum up, the contributions of the paper can be summa-
rized as follows:
• To the best of our knowledge, this is the first empir-

ical test able to provide an insight about the practical
usefulness of different community discovery approaches
in a real-world analytic scenario, in particular about
the difference between a partition approach versus an
overlapping approach. As a consequence,

• We showed how partition-based community discovery
is useful as a novel approach to the construction of
marketing, and possibly general purpose, classifications;

• We provided a novel approach to customer profiling, via
overlapping community discovery of product co-purchase
networks.

The rest of the paper is organized as follows. We present
relevant literature in Section II. Section III is dedicated to
the description of our dataset. The partition and overlapping
community discovery methods we used in this paper are
discussed in Section IV. Section V contains our case study.
Finally, Section VI concludes the paper with future works.

II. RELATED WORKS

This paper brings together two different branches of re-
search. On one hand, it is a paper about analyzing customer

behavior with computer science techniques, in particular data
mining and complex network analysis. On the other hand, it
is focused on a specific branch of network analysis, namely
community discovery. Thus, in this section we frame the paper
in these two branches, starting with the computer science
analysis of markets.

Markets are complex systems, where customers, manufac-
turers, goods, services, etc., are strongly related each other. For
this reason, classical data mining approaches (either focused
on one dimension, e.g. classifying the customers; or on direct
relations, e.g. co-appearance of a set of products in transac-
tions) are often not sufficient. Hence, during the last years, the
attention moved to modeling market environments as complex
networks. The entities that can be modeled are diverse: in
[7], the authors build a network connecting customers based
on communication frequency, to plan a better strategy for
targeted marketing in telecommunication services. In [8], [1]
the authors use a bipartite graph (a graph where nodes belong
to two different classes, in that case customers and products),
describing the whole retail market and finding a general law
driving the customer behavior. One first attempt to build a
network of products is in [2], where the authors use a dataset
coming from an university store over the time span of a year
(660K transactions, 2200 products). Authors build a directed
network (where relationships are not symmetrical) connecting
product A to product B if B is frequently purchased when
A is purchased. Their approach is based on association rules
discovery [9]. Here the authors are interested not at the
composition of the communities, but at their overall quality,
measured with an aggregation of the confidence attached to
the edges.

Moving to the other central aspect of the paper, one classical
problem definition in complex network analysis is how to
detect functional modules in the network. This is usually
known as “Community discovery”, borrowing from the social
network literature [3]. Given the high relevance of this branch
of studies for this paper, we examine this problem with higher
depth in Section IV. In general, community discovery is
a very popular research field in complex network analysis,
with hundreds of papers on the topic and an almost equal
number of developed algorithms [4]. The amount of relevant
literature is due to the lack of a proper and unique definition
of “community” [10] and the potential high impact of research
in the field [11]. Historical approaches such as defining a
particular quality function (like modularity) for community
discovery or the detection of semi-cliques in the network
(the k-clique percolation algorithm) have been widely used
but are of no interest here given their theoretical downsides
and/or their inability to scale for large networks [3]. Successful
modern approaches can be divided in two classes, that we will
explore in depth in Sections IV-A and IV-B: partition-based
algorithms such as Infomap [5], agent-based [12] or label
propagation based [13]; and overlap-based like DEMON [14],
Hierarchical Link Clustering [6] and overlap label propagation
[15], [16].
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Fig. 1: The Conceptual Data Model (star schema) of the Data
Warehouse

III. DATA

The dataset we used is the retail market data of Coop, one of
the largest Italian retail distribution company. The conceptual
data model of the data warehouse storing the retail data is
depicted in Figure 1.

The whole dataset contains retail market data in a time
window that goes from January 1st, 2007 to December, 31st
2011. The active and recognizable customers in that interval
are 1, 066, 020. A customer is active if she has purchased
something during the data time window, while she is recog-
nizable if the purchase has been made using a membership
card. The 138 stores of the company cover an extensive part
of Italy, selling 345, 208 different items.

Each data entry contains information about a product item
bought by a customer in a specific store in a specific moment.
While most of the dimensions of the data warehouse are
clearly understendable, of particular interest is the Marketing
category. This is used to classify products: it is organized
as a tree and it represents a hierarchy built on the product
typologies, designed by marketing experts of the company (see
Figure 1 for a list of hierarchy levels). The top level of this
hierarchy is called “Area” and it is split in three fundamental
product areas: Food, No Food and Other. The bottom level of
the marketing hierarchy, the one directly on top of the leaves
of the tree, is called Segment and it contains 7, 003 different
values. Each item has a classification in this hierarchy and,
thus, we can exploit such tree to choose the most suitable level
of aggregation of products. The main difference between item
level and Segment level consists in packaging, size and brand.
For example, the three items: half-liter Sugar Free Coca Cola
bottle, 6X1.5 liter Sugar Free Coca Cola bottle’s box, and two
liters Pepsi Cola bottle, belong all at the same Segment (Sugar
Free Cola Drinks).

As claimed above, the dataset contains information about
345, 208 different objects sold in the shops. The main bias
introduced by this huge cardinality of products are two:

1) we have information about products that are meaningless
for our purposes (e.g. shoppers, discount coupons, etc.),
and

2) due to some exception, we have distinct products that
have the very same semantic (e.g. 6-bottles regular Coca
Cola box and 6-bottles regular Coca Cola box with Santa
Claus in the package for Christmas time).

We solved (1) by filtering data using semantic information
in the marketing hierarchy. We solved (2) by including in our
analysis dataset at most the top 5 sold products (or less, if there
are not enough products) for each marketing Segment. Notice
that, for each item exception, there always is a product that is
top seller over the others with the same semantic. After this
filtering phase, the dataset contains 26, 862 different items, that
are the nodes of our network, belonging to 5, 510 marketing
Segments.

We now want to connect these nodes, to create the product
complex networks. Given the big amount of data considered,
almost all products have been sold at least once with all the
other products. We need to filter out these connections, to
focus only on relevant and significant relationships. To this
end, we discovered all possible pairs of products sold together
(using Apriori [9]), and we calculated, for each of them, the
lift measure, defined as:

lift(X,Y ) =
supp(X,Y )

supp(Y )× supp(X)

where X and Y are products, and supp(i) is the number
of baskets containing the item i divided the total number of
the baskets in the dataset. supp(i) is the “Relative Support”
of i, i.e. the observed likelihood of having i in a basket. Lift
measures how much a pair of items is interesting, calculating
how its distribution is related with the distribution of the single
items. If lift is equal to 1 we are under the hypothesis of
stochastic independence, and the greater lift is, the greater the
occurrence rate of the pair is significant.

Since lift is a relative measure, we need also to take under
control the popularity of the products composing the pair. In
fact, the supports of the single items composing the pairs are
in the denominator of the lift formula, and multiplying each
other. This implies that the smaller the supports are the greater
the lift is inflated, by exaggerating the relevance of products
rarely sold and thus not really meaningful. For this reason, we
also use the “Absolute Support” of the pair, measuring how
many are the occurrences of the couple in the dataset, i.e. the
number of baskets containing both products.

To sum up, lift tells us how interesting the pair occurrence is,
the absolute support tells us how relevant the pair occurrence
is. A pair to be included in our network has to be interesting
and relevant at the same time. In Tables I and II we show
the cardinalities of the edge set and the node set of different
product networks, built using different thresholds on absolute
support (in rows) and lift measure (in columns) of the pairs.

To obtain a manageable network, with edges representing
associations not very infrequent but strongly reliable, we chose



1 2 5 8 10
10 20,042,602 11,784,927 1,962,699 825,644 577,954
50 9,141,753 5,356,930 640,933 264,156 187,341
100 5,874,000 3,433,601 376,367 160,049 115,033

TABLE I: Number of edges in the Product Network after
filtering with Minimum Absolute Support (rows) and lift
(columns).

1 2 5 8 10
10 16,910 16,769 16,152 15,402 14,949
50 12,268 12,035 11,401 10,797 10,392
100 10,578 10,347 9,734 9,158 8,784

TABLE II: Number of nodes in the Product Network after
filtering with Minimum Absolute Support (rows) and lift
(columns).

to set the minimum Absolute Support at 10 and the minimum
lift at 10. The resulting product network contains 14, 949 nodes
and 577, 954 edges, and that is the network we use hereafter,
for our case study in Section V.

IV. COMMUNITY DISCOVERY

It has been described in literature that many real world
networks have a non-homogeneous topological distribution
of their links [4]. In other words, there are portions of the
network with a high edge density and they are usually isolated
by other areas with a low edge density. In literature, it has
been decided to call “communities” the collections of nodes
densely connected one to the other. The task to efficiently
detect the communities in complex networks has been called
“community discovery”.

This branch of network science is very prolific, with hun-
dreds of papers proposing new approaches to the detection
of network communities [3]. Given the extensive attention on
the subject, two issues have been deeply studied. The first is
the notion that there is not a single best method to extract
communities from complex networks. It is possible to define
“communities” in different ways and different approaches are
more or less efficient for a particular community definition [3].

The second issue is the one at the center of investigation
of this paper. The assumption that communities are dense
subsets of nodes isolated from the rest of the network has been
questioned. There is a growing evidence that communities are
not really isolated from the rest of the network, but rather
overlap the one with the other, sharing nodes. Given this issue,
two mutually exclusive approaches to community discovery
can be implemented: the partition approach, that follows the
main assumption here presented; and the overlap approach,
that allows nodes to be classified in more than one community.

It is one of the assumption of this paper that both approaches
can yield enlightening, and different, results even in the very
same network. For this reason, we briefly present the two
community discovery algorithms, that we use in our case
study of analysis of a co-purchase product network. In Section
IV-A we present Infomap, a community discovery algorithm
employing the partition approach; and in Section IV-B we

describe the Hierarchical Link Clustering (HLC), an overlap
community detector. Both algorithms are non-parametric, i.e.
they maximize an internal quality function and return optimal
clusters, thus their results are not dependent on our choices.
We are aware that many other algorithms with different
properties exists in literature, but we consider only these two
due to lack of space. In any case, these are two of the best
performing algorithms available in literature. We leave a more
comprehensive study for future work.

A. Partition Approach

As we discussed, in the partition approach the main as-
sumption is that densely connected nodes are separated from
the rest of the network by nodes with sparser connections. We
show a simplified example of this assumption in Figure 2(a). In
Figure 2(a) we clearly need a partition of the graph, separating
nodes 0 to 4 from nodes 5 to 9 and from nodes 10 to 14. As
a consequence, algorithms seeking a node partition have to
minimize the number of edges between communities, while
maximizing the number of edges inside communities. Many
non-trivial measures have been proposed. One of the proved
most successful is the compression factor allowed by the
partition, and it has been proposed in the Infomap algorithm.

The Infomap algorithm [5] is based on a combination of
information theoretic techniques and random walks. It uses
the probability flow of random walks on a graph as a proxy
for information flows in the real system and decomposes the
network into clusters by compressing a description of the
probability flow. The algorithm looks for a cluster partition
M into m clusters so as to minimize the expected description
length of a random walk.

In Figure 2(b) we have depicted the same example of Figure
2(a) where the edge width is proportional to the amount of
redundant information shared by the two connected nodes.

The intuition behind the Infomap approach for the random
walk compression is the following. The best way to compress
the paths is to describe them with a prefix and a suffix. Each
node that is part of the same cluster M of the previous node is
described only with its suffix, otherwise with prefix and suffix.
Then, the suffixes are reused in all prefixes, just like the street
names are reused in different cities. The optimal division in
different prefixes represent the optimal community partition.
We can now formally present the theory behind Infomap. The
expected description length, given a partition M , is given by:

L(M) = qH(Q) +

m∑
i=1

piH(Pi).

L(M) is made up of two terms: the first is the entropy
of the movements between clusters and the second is entropy
of movements within clusters. The entropy associated to the
description of the n states of a random variable X that
occur with probabilities pi is H(X) = −

∑n
1 pi log2 pi. In

(1) entropy is weighted by the probabilities with which they
occur in the particular partitioning. More precisely, q is the
probability that the random walk jumps from a cluster to



(a) Toy example of the fundamental
assumption of a partition algorithm.

(b) How Infomap sees the network
structure using random walks.

Fig. 2: Example of the partition approach to community
discovery.

another on any given step and pi is the fraction of within-
community movements that occur in community i plus the
probability of exiting module i. Accordingly, H(Q) is the
the entropy of clusters names, or city names in our intuition
presented before, and H(Pi) the entropy of movements within
cluster i, the street names in our example, including the
exit from it. Since trying any possible partition in order to
minimize L(M) is inefficient and intractable, the algorithm
uses a deterministic greedy search and then refines the results
with a simulated annealing approach.

B. Overlapping Approach

The overlap class of algorithms rejects the fundamental
assumption of the partition approach. Here, nodes are allowed
to be in multiple communities, therefore they are densely
connected also to nodes that are not part of the commu-
nity, removing the sparser areas of the network outside the
community. A simplified example representing this concept is
depicted in Figure 3(a). Here, nodes are grouped in cliques
of 6 nodes, connected the one with the other by cliques of
three nodes. So the nodes {0, 1, 2} form a 3-clique with each
other and two separated 6-cliques with nodes {3, 4, 5} and
{9, 10, 11}. Similar structures are generated by all other 3-
node groups on the diagonals.

Even in this simple case there is no reasonable partition of
the graph. There is no reason for which we should prefer clique
{0, 1, 2, 3, 4, 5} over clique {0, 1, 2, 9, 10, 11}, and we cannot
merge them either, ignoring the fact that the other nodes are
densely connected to them too. That is when an overlapping
approach like HLC [6] proves its usefulness.

HLC assumes that communities should group together
edges, not nodes. The relationship is part of a community and
the node is part of all the communities its relationships are part
of. In the case of a social network, a person knows other people
for one main reason (work together, study together, spend
together the free time, and so on) and therefore she is part of a
different community for each “relationship environment”. As a
consequence, these communities overlap. Figure 3(b) depicts
an example of HLC output for the graph presented in 3(a):

(a) Toy example of the fundamental
assumption of a overlap algorithm.

(b) How HLC sees the network struc-
ture using node Jaccard.

Fig. 3: Example of the overlap approach to community dis-
covery.

each link is colored according to the link cluster it belongs to,
and therefore we obtain as communities both {0, 1, 2, 3, 4, 5}
and {0, 1, 2, 9, 10, 11}.

For an undirected, unweighted network, we denote the set
of node i and its neighbors as n+(i). HLC considers only
link pairs that share a node, under the assumption that they
are more similar than disconnected pairs. The similarity S
between links eik and ejk in the set E of all links in the
network is computed as:

S(eik, ejk) =
n+(i) ∩ n+(j)

n+(i) ∪ n+(j)
.

Shared node k does not appear in S because it provides no
additional information and introduces bias. This is basically
the Jaccard index of the set of nodes one step away from
edges eik and ejk. HLC then builds a link dendrogram
from the presented equation (ties in S are agglomerated
simultaneously). The dendrogram is cut at a S threshold that
maximizes a quality function called “partition density”. For
each community, the partition density is defined as:

Dc =
mc − (nc − 1)

nc(nc − 1)/2− (nc − 1)
,

where mc is the number of links in the community c
and nc is the number of induced nodes in the community
(nc =

⋃
eij∈c{i, j}). The overall partition density of a given

set of link partition is the average of all partition densities,
normalized over the total number of edges in the network:

D =
2

|E|
∑
c

mc
mc − (nc − 1)

(nc − 2)(nc − 1)
.

V. CASE STUDY

We now take a look at the characteristics of the results
provided both by the partition and by the overlap approach.
We consider the following list of characteristics:
• The distribution of community size, to understand if

one method privileges larger or smaller communities, in
Section V-A;



 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000

p
(x

)

# Nodes

Partition
Overlap

Fig. 4: The log binned distribution of the number of nodes
per community, both for the partition and the overlapping
approach.

• The community entropy w.r.t. the marketing classifica-
tion, i.e. if the results of an algorithm are overlapping
with the known product classes, in Section V-B;

• Community extracts, to provide examples of the typical
communities returned by an algorithm, in Section V-C.

We then put together the discovered differences of commu-
nity results in Section V-D.

A. Community Size

We start by providing a basic information about a commu-
nity coverage: the distribution of the community size, i.e. the
number of nodes per community. The distribution is depicted
in Figure 4. On the x axis we report the number of nodes and
on the y axis the probability that a community contains the
given number of nodes, both for Infomap (red line) and HLC
(green line). The distribution is log binned, i.e. each x axis
value is grouped in bins of increasing size.

As we can see, the two distributions have different asymp-
totic behavior. Infomap provides a community size distribution
that resembles a power-law, with more than 30% communities
containing 4 nodes or less, and one community containing
more than 3000 nodes. On the other hand, HLC communities
have a very different size distribution: just above 3% of
communities have 4 nodes or less, and 10% of them have
around 2000 nodes. So the first difference between the two
approaches can be summarized as: “The overlap approach
returns larger communities than the partition approach”.

B. Community Entropy

We now want to describe what is the actual content of these
communities. In particular, we are interested in how homoge-
neous the communities are w.r.t. the marketing classification
of the supermarket. In practice, we want to know if in a given
community we grouped the products that belong to the same
marketing classification. For the marketing classification, we
use the Segment level, as presented in Section III. A good
measure to do this is to calculate their information entropy.
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Fig. 5: The log binned distribution of the entropy per commu-
nity, both for the partition and the overlapping approach.

The information entropy is formally defined as the average
unpredictability in a random variable, which is equivalent to
its information content. In our case, a community c of |c| nodes
is viewed as |c| outcomes of a random selection of a marketing
classification. The possible outcomes of the extraction are
|M |, the number of marketing classifications. The information
entropy of a community c ∈ C is then calculated as:

H(c) = −
∑
m∈M

p(cm) log2 p(cm),

where p(cm) is the number of nodes in the community c that
belongs to the marketing category m, over the total number
of nodes inside community c. The average entropy value,
calculated for all communities in C that is the community set,
for Infomap is 1.8302, while the average for HLC is equal
to 5.66305. The average entropy could not be an accurate
information, as it may be driven by extreme values. For this
reason, we depict in Figure 5 the probability (y axis) that
a given community takes a given entropy value (x axis) for
the communities extracted by Infomap (red line) and by HLC
(green line). Again, the distributions are log binned.

Also in this case, the entropy distribution for Infomap and
HLC look different. Most communities returned by Infomap
have entropy lower than 3, and the number of communities
with entropy larger than 6 is not significant. On the other hand,
the majority of HLC communities have entropy larger than 3,
with 20% of the communities having an entropy around 9.

One could think that the higher entropy of the HLC com-
munities is due exclusively to the fact that HLC communities
are larger on average. To disprove the objection, for each
community of size |c| we normalize the obtained entropy
value over the description length required to code a random
community, that is log2 |c|. We then sum up all the normalized
values and take the community average, as:

H̄(C) =
1

|C|
∑
c∈C

H(c)

log2 |c|
.



(a) Community #37. (b) Community #80.

Fig. 6: Extracts from the non-overlapping communities.

If H̄(C) = 1, then, on average, ∀c it holds H(c) = log2 |c|,
i.e. the distribution of marketing classifications in the com-
munity is practically random. If H̄(C) = 1, then for each
community c we have H(c) > log2 |c|, then the communities
separate products of the same marketing category even if it
would be expected to find them in the same community. If
H̄(C) < 1, then on average we find products of the same
marketing category in the same community.

The lower the H̄(C) value, the more homogeneous the
communities are on the marketing classification, independently
on their number of nodes. We found that in Infomap H̄(C) =
0.60180796763, while for HLC H̄(C) = 0.814926005465.
We can conclude that HLC communities have a 20% higher
entropy than Infomap, independently on community size. So
the second difference between the two approaches can be
summarized as: “The overlap approach returns communities
that contains more diverse typologies of products than the
partition approach”.

C. Community Extracts

The aim of this section is to provide some concrete instances
of the findings described in the previous subsections. We pro-
vide two examples of small communities extracted using the
Infomap partition method and two examples of communities
extracted with the HLC overlap community detection.

Figures 6(a) and 6(b) are the two extracts from the Infomap
community partition. Given that most Infomap communities
are small (see Figure 4) it is easy to find representative
communities of limited size. In this case, we limit ourselves
to communities containing 8 nodes. These two communities
are identified as community #37 and #80 respectively.

In Figures 6(a) and 6(b), the node color refers to the node
marketing Segment (see Section III). Colors are not consistent
across figures, i.e. even if nodes from different figures have
the same color it does not mean they are in the same segment.
Edge width and color are proportional to edge weight, that is
the number of times the two products were bought in the same
shopping session. In Section III we refer to this quantity as
“Absolute Support” of the pair and the minimum value is equal
to 10, i.e. each connected pair of products in the community
has been sold at least 10 times. In the edge color map, orange
indicates high weight, blue indicates low weight.

By inspecting communities #37 and #80 we can observe the
following characteristics:

(a) Community #239. (b) Community #590.

Fig. 7: Extracts from the overlapping communities.

• The communities are very dense: in fact, they are cliques,
where every node is connected to every other node,
meaning that different customers have bought all possible
combinations of these products at least once;

• Most links have high weight, meaning that the amount
of customers buying these products in the same shopping
session is high;

• All products in the communities are part of a very
homogeneous class of products: in community #37 we
have only biological jams, while in community #80 we
have only liquid yogurts.

We now turn to examine communities extracted with the
overlap HLC approach. They are depicted in Figures 7(a)
and 7(b) and they are identified with IDs #239 and #590.
Again, the edge width and color is representative of edge
weight in the same scale of Figures 6(a) and 6(b), while node
color indicates the marketing segment and it is not consistent
across figures, due to the high amount of segments present
in each community. We had to choose communities with a
larger number of nodes, given the relative scarcity of small
communities returned by HLC (see Figure 4).

By inspecting communities #239 and #590 we can observe
the opposite characteristics we observed for the Infomap
communities:
• The communities are dense but they are not cliques: they

are rather cliques joint together by some products (for
example, the arm sphygmomanometer plays a central role
in community #239);

• Almost all links have low weight, meaning that the
amount of customers buying these products in the same
shopping session is low;

• Almost all products in the communities are part of a
different marketing segment.

So we can summarize the results of this section by say-
ing that: “Examples shows that characteristics and topology
of communities returned by the overlap approach are very
different from the results of the partition approach”.

D. Community Interpretation

In this section we wrap up the results we presented in the
previous sections, providing a tentative explanations that takes
into account all of them. The conclusions of each section were:



• The overlap approach returns larger communities than the
partition approach;

• The overlap approach returns communities containing
more diverse typologies of products than the partition
approach;

• Examples shows that characteristics and topology of
communities returned by the overlap approach are very
different from the results of the partition approach.

Our explanation is then that the overlap approach mostly
reflect customer behaviors and possible expansions of them,
while the partition approach returns a refined marketing
classification. We support our explanation by noticing that
customers usually buy products for different marketing seg-
ments because they have to satisfy different needs, this also
implies that a community grouping together a “customer
profile” should be larger and more diverse on marketing
classifications. Being less dense, overlap communities also
put together products that some customers bought together
and some others, who bought similar products, did not buy
together, identifying possible customized product suggestions
to the marketing department.

On the other hand, the partition approach is more ho-
mogeneous on the existing marketing classification, but the
disagreement points may be interesting to explore to refine
it. The small communities suggest a fine grained marketing
description and the high density and edge weight of them
implies that the products have really something to do with each
other. It is worthwhile to notice that Infomap can also be used
with a hierarchical approach, by merging related communities
at different levels. In this way, it is possible to reconstruct a full
marketing hierarchy. Also HLC by nature returns a hierarchy,
but of a different kind: it is a hierarchy of extended customer
profiles, with different, but nevertheless useful, classification
of customers’ behaviors and sub-behaviors.

VI. CONCLUSION

In this paper, we investigated the different application
scenarios that one can tackle with community discovery using
different community definitions. We focused on networks of
products co-purchased in a supermarket. In particular, we have
showed that there is not a quantitative difference in how good
or bad are the results obtained by searching for a disjoint
community partition and the results obtained from an overlap-
ping coverage search. There is rather a qualitative difference,
i.e. different problem definitions. A partition approach has
proven to be useful as an approach to a marketing product
classification. An overlap approach, instead, can shed some
light over a novel technique for customer profiling.

The present work can be extended along several other
lines of research. First and foremost, the distinction between
partition and overlap based approaches is just one of the many
in the field of community discovery. Some review works [3]
have come as far as to identifying more than seven macro
definitions of communities in complex networks. It is possible
that each of these definitions is going to provide answers
for additional problem definitions. As a second point, the

empirical study about the different practical applications of
alternative methods of community discovery can be separated
from the application scenario we considered in this paper.
Instead of focusing on product networks, we can consider
many different typologies of networks, covering a wider set
of human activities and natural phenomena.
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