
A

Uncovering Hierarchical and Overlapping Communities
with a Local-First Approach

Michele Coscia, CID - Harvard Kennedy School, Cambridge, MA, US
Giulio Rossetti, KDDLab, ISTI-CNR, Pisa, Italy
Fosca Giannotti, KDDLab, ISTI-CNR, Pisa, Italy
Dino Pedreschi, Computer Science Department, University of Pisa, Pisa, Italy

Community discovery in complex networks is the task of organizing a network’s structure by grouping to-
gether nodes related to each other. Traditional approaches are based under the assumption that there is a
global level organization in the network. However, in many scenarios, each node is the bearer of complex
information, and cannot be classified in disjoint clusters. The top-down global view of the partition approach
is not designed for this. Here, we represent this complex information as multiple latent labels, and we pos-
tulate that edges in the networks are created among nodes carrying similar labels. The latent labels are
the communities a node belongs to and we discover them with a simple local-first approach to community
discovery. This is achieved by democratically letting each node vote for the communities it sees surrounding
it in its limited view of the global system, its ego neighbourhood, using a label propagation algorithm, as-
suming that each node is aware of the label it shares with each of its connections. The local communities are
merged hierarchically, unveiling the modular organization of the network at the global level and identifying
overlapping groups and groups of groups. We tested this intuition against the state-of-the-art overlapping
community discovery, and found that our new method advances in the chosen scenarios in the quality of
the obtained communities. We perform a test on benchmark and on real-world networks, evaluating the
quality of the community coverage by using the extracted communities to predict the metadata attached to
the nodes, that we consider an external information about the latent labels. We also provide an explanation
about why real-world networks contain overlapping communities and how our logic is able to capture them.
Finally, we show how our method is deterministic, incremental, and has a limited time complexity, so that
it can be used on real-world scale networks.

Categories and Subject Descriptors: I.5.3 [Clustering]: Algorithms

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: complex networks, data mining, community discovery

1. INTRODUCTION
Complex network analysis has emerged as one of the most exciting domains of data
analysis and mining over the last decade. One of the most prolific sub fields is com-
munity discovery in complex network, or CD in short. The concept of a “community”
in a (web, social, or informational) network is intuitively understood as a set of enti-
ties that have some latent factors in common with each other, and thus play a specific
role in the overall function of the complex system [Coscia et al. 2011]. The traditional
approach assumes that latent factors drive network connectivity, thus finding sets of

This work has been partially supported by the European Commission under the FET-Open Project n. FP7-
ICT-270833, DATA SIM – DATa science for SIMulating the era of electric vehicles http://www.datasim-
fp7.eu/. This material is based upon work supported by the National Science Foundation under Grant No.
1216028.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

(a) A global view of the Facebook
graph from 15k users.

(b) The “ego minus ego” network of one
Facebook user among the 15k.

Fig. 1: The real world example of the “local vs global” structure intuition.

nodes with a high edge density among each other and low edge density with the rest
of the network effectively detects the functional modules of the network. Community
discovery is then a network variant of data clustering, where proximity is replaced
with edge connectivity. To efficiently detect the latent modules of the network is intu-
itively useful as they give insights about how the network works. In fact, one can find a
number of applications in literature, ranging from targeted vaccinations and outbreak
prevention [Ruan and Zhang 2007], to viral marketing [Leskovec et al. 2007] and to
many web data analysis tasks such as finding tribes in online information exchanges
[Goyal et al. 2009], [Wang et al. 2011], data compressing, clustering [Boldi et al. 2011]
and sampling [Katzir et al. 2011].

The classical problem definition of community discovery assumes that each node
plays a single role in the network. This is easily understood by looking at examples
of limited size, where it is likely that this assumption is true, as the phenomenon
represented is likely to be properly isolated. In this case, the denser areas are easily
identifiable by visual inspection. The problem becomes much harder for medium and
large scale networks, where many different phenomena are at play at the same time,
tangled the one with another. At the global level, very little can be said about the
modular structure of most networks: on larger scales the organization of the system
becomes simply too complex. The friendship graph of Facebook includes more than
1.11 billion nodes as of March 20131. But even on a tiny fragment of the Facebook
friendship graph to assume that there is only a handful of disjoint latent factors at
play is naive. In Figure 1(a), we depicted the connections among 15,000 nodes, i.e.,
less than 0.00002% of the total network. Even in this small subset of the network,
the friendship dynamics are too interconnected and there is simply no global level
organization. In cases like this, the traditional community discovery assumption of a
global level disjoint partition tends to return not meaningful communities. The typical
aim is to cluster the whole structure and return some huge communities and a long
list of small branches (see [Coscia et al. 2011]).

1http://investor.fb.com/releasedetail.cfm?ReleaseID=761090

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

However, as we noted, the structure of cohesive groups of nodes emerge easily con-
sidering a local fragment of an otherwise big network. The key lies in the fact that
in a local view there are few latent factors included and they are usually disjoint one
from the other. To use a social metaphor, common sense goes that people are good at
identifying the reasons why they know the people they know. In network terms, each
node has presumably an incomplete, yet clear, vision of the communities it is part of.
Being a bearer of a collection of latent factors, that we represent as labels, he connects
to its neighbourhood to the nodes bearing the same labels. Then, we can exploit this
idea for the CD problem, as illustrated by Figure 1(b). Here, we chose one of the 15k
nodes from the previous example and extracted what we call its “ego minus ego” net-
work, i.e. its ego network in which the ego node has been removed, together with all its
attached edges. Here, it is clear which nodes share which factor, or label, around the
ego. Some of these factors are the high school and university friends of the ego, mates
from different workplaces and the members of an online community (we know all these
details because the chosen ego is one of the authors of this paper). The ego carries all
these labels and knows which subsets of its neighbourhood carry one, or more, of these
labels too.

Different egos will detect different labels over the same neighbours. The union of all
these perspectives, or a hierarchical view in which communities with common labels
can be merged together at different aggregation levels, creates an optimal detection
of the latent factors of the network. In other words: if node A and node B are consid-
ered in the same communities by all the nodes connected to both A and B, then they
should be grouped in the same community, because all nodes agree that A and B share
the same factors, or labels. If they are considered in the same communities by most
or many nodes connected to them, then they are probably part of a higher level super
community. This is achieved using a democratic bottom-up mining approach: in turn,
each node detects the labels attached to the neighbours surrounding it and then all
the different perspectives are merged together in an overlapping structure. This over-
lapping structure can be view as just a flat community coverage, or it can be merged
together in a hierarchical fashion.

In the vast CD literature, the general approach does not consider nodes as bear-
ers of different label. The modular structure of a network is usually detected with a
(greedy) algorithm, optimizing different quality functions and then returning a set of
communities extracted from the global structure (we discuss some of these methods in
Section 2). This approach generally ignores the networks latent factors and just oper-
ates on the edges of the network without any assumption on why they are distributed
as they are. Instead, we propose a change of mentality, in which we make assumptions
about the edge distribution and we use these assumptions as drivers of the community
discovery process. We propose a simple local-first approach to community discovery in
complex networks by letting the latent factors of the organization of a network emerge
from local patterns.

Essentially, we adopt a democratic approach to the discovery of communities in com-
plex networks. We ask each node to identify the labels it shares with different groups of
nodes present in its local view of the network. For this reason, we chose to name our al-
gorithm Democratic Estimate of the Modular Organization of a Network, or DEMON
in short. In practice, we extract the ego network of each node and apply a Label Propa-
gation CD algorithm [Raghavan et al. 2007] on this structure, ignoring the presence of
the ego itself, whose labels will be evaluated by its peers neighbours. We then combine,
with equity, the vote of everyone in the network. The result of this combination is a set
of (overlapping) modules, our latent factors, detected not by a top-down approach, but
by the actors of the network itself. We then either stop the process here, or we consider
again a community as a collection of labels, the ones carried by the nodes composing it,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

connected to other communities by the nodes shared with them, that are the common
labels between them. In this way, there is no logical distinction between a community
and a node, and therefore we can then reapply the same process and obtain an addi-
tional level of the community hierarchy. We repeat the process for each hierarchy level
until we collapse the entire network in a set of disconnected communities.

To better visualize how our algorithm works, we can imagine to analyse a product
network: nodes representing products from a supermarket and edges connecting nodes
who share product categories. In the first step, DEMON identifies the micro commu-
nities to which a specific product belongs: those are sets of other products sharing,
for instance, one or more specific types/categories (fruits, meats, vegetables, gloves,
shirts. . .), while, in the second step, such sets are merged to identify higher-level cat-
egory definitions (i.e. food, clothing. . .).

Our democratic algorithm is incremental, allowing to recompute the communities
only for the newly incoming nodes and edges in an evolving network. Nevertheless,
DEMON has also a low theoretical linear time complexity. The main core of our method
has also the interesting property of being easily parallelizable, since only the ego net-
work information is needed to perform independent computations, and it can be easily
combined in a MapReduce framework [Dean and Ghemawat 2004]; although the post-
process FlatOverlap procedure is not trivially solvable in a MapReduce framework
(and for this reason we leave a discussion about the parallel implementation as future
work). The properties of DEMON support its use in massive real world scenarios.

We provide an extensive empirical validation of DEMON. In our experimental set-
ting, we are interested in establishing a link between the communities found by
DEMON and the real world knowledge about the labels attached to the nodes. In-
tuitively, the two should correspond. This is the primary focused objective of DEMON,
and we leave other problem definitions to other CD algorithms.

First, we test the performance of the algorithms in an established benchmark setting
[Lancichinetti and Fortunato 2009a], able to generate directed and weighted networks
with overlapping communities. Second, we confront the performance with real world
networks. In this setting, we make use of a multilabel predictor fed with the extracted
communities as input, with the aim of correctly classifying the metadata attached
to the nodes in real life. Our datasets include the international store Amazon, the
database of collaborations in movie industry IMDb, and the register of the activities of
the US Congress GovTrack.us. Finally, we provide our latent factor based explanation
about why social networks include overlapping communities and why DEMON is good
in finding them.

This paper is an extension of our previous work [Coscia et al. 2012]. The extension
that we present here provides the following additional contributions:

— We already provided in this introduction the theoretical ground on which the al-
gorithm has been built, concerning why networks contain overlapping community,
based on the idea of multiple latent factors (i.e. labels) attached to nodes that drive
their connectivity;

— We extend the DEMON algorithm by introducing the possibility of returning the
hierarchical organization of the communities;

— We introduce the experimental evaluation using benchmark networks;
— We extend the experimental section by introducing a new dataset including mul-

tidimensional networks [Berlingerio et al. 2012] and dealing with the problem of
explaining the overlap in social networks;

— We translate the formulation of the DEMON assumption about the latent factors
role in the generation of communities, paving the road for the development of better
network benchmarks and generators;

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

— We extend the related work section by placing DEMON in a community discovery
algorithm classification.

The rest of the paper is organized as follows: in Section 2 we present related works
in community discovery literature, placing DEMON in the community discovery clas-
sification. Section 3 is dedicated to the problem representation and definition. Section
4 describe the DEMON algorithm structure, with algorithmic details and an account of
the formal properties of the method. Our experiments with benchmark and real world
networks are presented in Section 5. In Section 6 we address the problem of explaining
the overlap in social network and we lay down the foundations of the DEMON-based
community logic explanation. Section 7 concludes the paper.

2. RELATED WORK
The problem of finding communities in complex networks is very popular among net-
work scientists, as witnessed by an impressive number of valid works in this field. A
huge survey by Fortunato [Fortunato 2010] explores all the most popular techniques
to find communities in complex networks. Traditionally, a community is defined as a
dense subgraph, in which the number of edges among the members of the commu-
nity is significantly higher than the outgoing edges. However, this definition does not
cover many real world scenarios [Yang and Leskovec 2012], and in the years many dif-
ferent solutions started to explore alternative definitions of communities in complex
networks [Coscia et al. 2011].

In [Coscia et al. 2011] the main categories of community discovery are: Feature Dis-
tance, Internal Density, Bridge Detection, Diffusion, Closeness, Structure Definition,
Link Clustering and Meta Clustering.

The algorithms in the Feature Distance category usually apply some information
theory principles by considering the network as a matrix in which each node is rep-
resented as a vector of attributes. Then the matrix is clustered according to these
features. One example is Cross Associations [Papadimitriou et al. 2008].

In the Internal Density category the idea is to partition the network by maximizing
the edge density inside the communities. The majority of methods in this category are
based on the modularity concept, a quality function of a partition proposed by Newman
[Clauset et al. 2004], [Newman 2006]. Modularity scores high values for partitions in
which the internal cluster density is higher than the external density. Hundreds of
papers have been written about modularity, either using it as a quality function to be
optimized, or studying its properties and deficiencies. For instance, two of the issues af-
fecting modularity approaches are the resolution problem and the degeneracy of good
solutions [Fortunato and Barthélemy 2007]. One of the most advanced examples of
modularity maximization CD is [Mucha et al. 2010], where the authors use an exten-
sion of the modularity formula to cluster multiplex (evolving and/or multirelational)
networks. A fast and efficient greedy algorithm, Modularity Unfolding, has been suc-
cessfully applied to the analysis of huge web graphs of millions of nodes and billions of
edges, representing the structure in a subset of the WWW [Blondel et al. 2008].

The Bridge Detection algorithms aim to find similar structure, but with the opposite
point of view: they want to separate the communities by identifying the sparser areas
of the network. Examples in this category are [Girvan and Newman 2002], [Bagrow
and Bollt 2005].

In the Closeness category, Infomap has been proven to be one among the best per-
forming non overlapping algorithms [Lancichinetti and Fortunato 2009b]. In the same
category of Infomap there is also the Walktrap algorithm [Pons and Latapy 2006].

A very important property for community discovery is the ability to return an over-
lapping coverage, i.e., the possibility of a node to be part of more than one community.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

This property reflects the common sense intuition that each of us is part of many
different communities, including family, work, and probably many hobby-related com-
munities. The above categories do not consider the possibility of having overlapping
communities, and the extensions proposed to do so are usually not universally ac-
cepted. The Link Clustering category has been created with this specific focus in mind:
the community partition is applied on the edges and then the nodes are part of all the
communities of their edges (see [Ahn et al. 2010] and [Evans and Lambiotte 2009]).

An overlapping coverage can be achieved also in the Structure Definition category,
that groups together those algorithms that aim to find a given community structure in
the network. An example is the k-clique percolation algorithm [Derényi et al. 2005].

Also the Meta Clustering category may provide a way to obtain an overlapping cov-
erage, as it is designed to add community features to community discovery algorithms
that are part of different categories. An example of such algorithm is HCDF [Hender-
son et al. 2010]. DEMON places itself in this category, as it merges local communities
calculated for every ego network. The algorithm to extract the local communities in
the ego networks can be part of any other category. A similar approach that uses ego
networks for community discovery can be found in [McAuley and Leskovec 2012].

We consider as last category the Diffusion category, as it is very relevant here. In
the present article we used a Diffusion category algorithm as the method to extract
the communities from the ego networks. We used the most known approach in this
category: Label Propagation [Raghavan et al. 2007]. In [Raghavan et al. 2007] authors
detect communities by spreading labels through the edges of the graph and then label-
ing nodes according to the majority of the labels attached to their neighbours, iterating
until a general consensus is reached. With a reasonable good quality on the partition,
this algorithm is extremely fast and known to be one of the very few quasi-linear solu-
tions to the community discovery problem, even if its plain application leads to worse
results than Infomap and it does not return an overlapping coverage.

In Section 6 we show how to apply DEMON to understand the origins of the over-
lap in social communities. This line of research is connected with the analysis of what
we call “multidimensional communities”: communities that are formed in networks
with multiple different relations types (known as multidimensional networks [Berlin-
gerio et al. 2012]). This line of research is connected with the problem of multi-view
clustering, explored in [Bickel and Scheffer 2004], [Kumar and III 2011], [Long et al.
2008], [Zhou and Burges 2007]. In complex network, the problem of the definition of
network density in multidimensional communities has been addressed in [Berlingerio
et al. 2011]. DEMON cannot be currently classified as a proper multidimensional com-
munity discovery algorithm, as it does not address the problem of multidimensional
density and we apply it separately to the different dimensions of the network we study
in 6, but its multidimensional development is left as a future work.

To extract useful knowledge from the modular structure of networked data is also a
prolific track of research. We recall the GuruMine framework, whose aim is to identify
leaders in information spread and to detect groups of users that are usually influenced
by the same leaders [Goyal et al. 2009]. Many other works investigate the possibility of
applying network analysis for studying, for instance, the dynamics of viral marketing
[Leskovec et al. 2007].

3. NETWORKS AND COMMUNITIES
We model networks and their properties in terms of simple graphs. For the sake of
simplicity, a network is represented as an undirected, unlabeled and unweighed simple
graph, denoted by G = (V,E) where V is a set of nodes and E is a set of edges, i.e., pairs
(u, v) representing the fact that there is a link in the network connecting nodes u and
v. It should be noted, however, that our method can handle weighted and directed

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

graphs. In our representation of the problem, each node is considered carrying a set of
latent labels.

In general terms, our problem definition is to find communities in complex networks.
Usually, there is some ambiguity connected to the concept of “community” in a complex
network [Coscia et al. 2011]. To solve it, we use the latent labels of the nodes as drivers
of the community discovery process. In complex and semantically rich settings (such
as the modern Web, social networks or other kinds of complex networks), nodes are
complex entities carrying multiple attributes that can make them part of different
communities for different reasons. In our problem representation, these reasons are
represented by the latent labels. We then need to extend the community discovery
problem definition to be able to detect them.

Firstly, we define two basic graph operations. The first one is the Ego Network ex-
traction EN . Given a graph G and a node v ∈ V , EN(v,G) is the subgraph G′(V ′, E′),
where V ′ is the set containing v and all its neighbours in E, and E′ is the subset of E
containing all the edges (u, v) where u ∈ V ′∧v ∈ V ′. The second operation is the Graph-
Vertex Difference −g: −g(v,G) will result in a copy of G without the vertex v and all
edges attached to v. The combination of these two functions yields the EgoMinusEgo
function: EgoMinusEgo(v,G) = −g(v,EN(v,G)).

Given a graph G and a node v ∈ V , the set of local communities C(v) of node v is a
set of (possibly overlapping) sets of nodes in EgoMinusEgo(v,G). Each set C ∈ C(v)
is grouped according to common latent labels. Each node in C shares more common
latent labels with other nodes in C, more than with any other node in C ′ ∈ C(v), with
C 6= C ′.

There are two different ways to go from local communities to global communities,
bringing together an overlapping community coverage with a hierarchical community
structure. These two properties have for long been thought as mutually exclusive, but
recent approaches proved this assumption wrong [Ahn et al. 2010].

The first is merging the overlapping communities according to the amount of com-
mon latent labels they contain, represented by the fact that they share many nodes. In
this scenario, we define the set of communities of a graph G as:

C = Max(
⋃
v∈V
C(v)) (1)

where, given a set of sets S, Max(S) denotes the subset of S formed by its maximal
sets only; namely, every set S ∈ S such that there is no other set S′ ∈ S with S ⊂
S′. In other words, by equation (1) we generalize from local to global communities
by selecting the maximal local communities that cover the entire collection of local
communities, each found in the EgoMinusEgo network of each individual node.

In the second approach we recursively apply our logic by seeing the communities as
“super nodes” in the network. Just like the nodes, also the communities are collections
of latent labels. Therefore, they can be clustered together according to the labels they
share. In this approach, the first level of the hierarchy is the set of all C(v). Then,
all communities in C(v) are collapsed in a single node. Edges are set between the col-
lapsed communities if the two original communities shared at least one node, weighted
proportionally to the number of shared nodes. On this new graph structure, the com-
munity discovery is applied again. The procedure is repeated recursively until we find
a set of disconnected communities.

4. THE ALGORITHM
In this section we present our solution to the community discovery problem. We first
present the core of DEMON algorithm in Section 4.1, with its corresponding pseudo

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Algorithm 1 The pseudo-code of DEMON algorithm.
Require: G : (V,E); C = ∅
Ensure: set of overlapping communities C
1: for all v ∈ V do
2: e← EgoMinusEgo(v,G)
3: C(v)← LabelPropagation(e)
4: for all C ∈ C(v) do
5: C ← C ∪ v
6: end for
7: end for
8: return C

code in Algorithm 1. Then, we present the two alternative approaches: the Merge func-
tion for the flat overlap in Section 4.2 and the Merge function for the hierarchical
overlap in Section 4.3. Finally, we present the properties of DEMON and its time com-
plexity in Sections 4.4 and 4.5.

4.1. The Core of the Algorithm
The set of discovered communities C is initially empty. The external (explicit) loop

of DEMON cycles over each individual node, and it is necessary to generate all the
possible points of view of the structure and get a complete coverage of the network
itself. For each node v, we apply the EgoMinusEgo(v,G) operation defined in Section
3, obtaining a graph e. We cannot apply simply the ego network extraction EN(v,G)
because the ego node v is directly linked to all nodes ∈ EN(v,G). This would lead to
noise in the subsequent steps of DEMON, since by our definition of local community
the nodes would be put in the same community if they are close to each other. Obviously
a single node connecting the entire sub-graph will make all nodes very close, even if
they are not in the same community. For this reason, we remove the ego from its own
ego network.

Once we have the e graph, the next step is to compute the communities contained in
e. We chose to perform this step by using a community discovery algorithm borrowed
from the literature. Our choice fell on the Label Propagation (LP) algorithm [Raghavan
et al. 2007]. This choice has been made for the following reasons:

(1) LP shares with this work the definition of what is a community.
(2) LP is known as the least complex algorithm in the literature, reaching a quasi-

linear time complexity in terms of nodes. However,
(3) LP will return results of a quality comparable to more complex algorithms [Coscia

et al. 2011].

Reason #2 is particularly important, since Step #3 of our pseudo code needs to be
performed once for every node of the network. It is unacceptable to spend a superlin-
ear time for each node at this stage, if we want to scale up to millions of nodes and
hundreds of millions edges. Given the linear complexity of Step #3, we refer to this as
the internal (implicit) loop for finding the local communities.

We briefly describe in more detail the LP algorithm, given its importance in the
DEMON algorithm, following the original article [Raghavan et al. 2007]. Suppose that
a node v has neighbours v1, v2, ..., vk and that each neighbour carries a label denot-
ing the community that it belongs to. Then v determines its community based on the
labels of its neighbours. A three-step example of this principle is shown in Figure 2.
The authors assume that each node in the network chooses to join the community to
which the maximum number of its neighbours belong. As the labels propagate, densely
connected groups of nodes quickly reach a consensus on a unique label. At the end of

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

a

c
b

a

a
a

a

a c

c

c
a

c
b

b

b

a

c

a

a

b

a

c
c

c
c

a

b

b

b

a

a
a

a

a a

c

c
c

c
c

b

b

b b

Fig. 2: A simple simulation of the Label Propagation process for community discovery.

the propagation process, nodes with the same labels are grouped together as one com-
munity. Clearly, a node with an equal maximum number of neighbours in two or more
communities can belong to both communities, thus identifying possible overlapping
communities. The original algorithm does not handle this situation. For clarity, we
report here the procedure of the LP algorithm, that is the expansion of Step #3 of
Algorithm 1 and represents our inner loop:

(1) Initialize the labels at all nodes in the network. For any given node v, Cv(0) = v.
(2) Set t = 1.
(3) Arrange the nodes in the network in a random order and set it to V .
(4) For each vi ∈ V , in the specific order, let Cvi(t) = f(Cvi1(t − 1), . . . , Cvik(t − 1)). f

here returns the label occurring with the highest frequency among neighbors and
ties are broken uniformly randomly.

(5) If every node has a label that the maximum number of their neighbors have, or
t hits a maximum number of iterations tmax then stop the algorithm. Else, set
t = t+ 1 and go to (3).

At the end of the LP algorithm we reintroduce, in each local community, the ego node
v.

The result of Steps #1-7 of Algorithm 1 is a set of local communities C, according to
the perspective of all nodes of the network. Please note that there are not repeated
communities or communities contained in other communities, as each community has
a hash of nodes representing its content. This ensures the first property of DEMON
that we will see in Section 4.4. However, these communities are likely to be an in-
complete view of the real community coverage of G. Thus, the result of DEMON needs
further processing: to merge each local community of C in order to obtain a proper
community coverage. There are two different versions of the function that carries out
this task, called Merge function. The two versions are presented in the following two
sections.

4.2. The Flat Overlap Merge
In FlatOverlap, two communities C and I are merged if and only if a fraction at most

equal to ε of the smaller one is not included in the bigger one; in this case, C and I are
removed from C and their union is added to the result set. The ε factor is introduced
to vary the fraction of common elements provided from each couple of communities:
ε = 0 ensures that two communities are merged only if one of them is a proper sub-
set of the other, on the other hand with a value of ε = 1 even communities that do
not share a single node are merged together. This procedure is repeated for each com-
munity discovered. Returning to the product network example previously introduced,
FlatOverlap tries to identify higher level communities by merging two sets of nodes

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Algorithm 2 The pseudo-code of FlatOverlap function.
Require: C = Local community set; ε ∈ [0..1]
Ensure: set of global overlapping communities C
1: for all C ∈ C do
2: for all I ∈ C do
3: if C ⊆ε I then
4: u = C ∪ I;
5: C − C; C − I;
6: C = C ∪ u;
7: end if
8: end for
9: end for
10: return C

Algorithm 3 The pseudo-code of HDemon function.
Require: G = (V,E), C = Local community set
Ensure: set of global overlapping communities C
1: l← 0
2: C0 ← C
3: while |Cl| > |CC(G)| do
4: for all C1 ∈ Cl do
5: for all C2 ∈ Cl do
6: E ← E ∪ (C1, C2, |C1 ∪ C2|)
7: end for
8: end for
9: l← l + 1
10: Gl ← (V ← Cl−1, E)
11: Cl ← DEMON(Gl, Cl)
12: end while
13: return {C0, C1, ..., Cl}

if the majority of the products in smallest one also belongs to the bigger one. This it-
erative procedure aims at identifying groups of products which can describe broader
semantic product categories.

4.3. The Hierarchical Extension
The HDemon function starts by obtaining the initial set of local communities C. It

puts all these communities in a subset of C and we refer to it as C0.
For each pair of community discovered HDemon calculates the amount of shared

nodes between the two. It connects the two communities, collapsed in a single node,
with an edge whose weight is proportional to this amount. At the end of this procedure,
we obtain a higher hierarchical view of the original graph G that we call G1.

At this point, HDemon calls again the main core of DEMON, this time providing as
input not G, but G1. The resulting local communities of G1 are put in a separate subset
of C that we call C1. The procedure is repeated until we find a number of communities in
the network lower or equal than the number of connected components of the network
(|CC(G)|). At this point, we return C, containing all the C0, C1, ...Ci, representing the
hierarchical view of the overlapping communities of G.

4.4. DEMON Properties
To prove the correctness of the DEMON algorithm w.r.t. the problem definition in Sec-
tion 3, we prove by induction some of its properties. It is worthwhile to note that these

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

properties assume that the results of step #3 are constant. The LP algorithm does
not satisfy this requirement, i.e. with different random seeds it will return different
results. However, here we just want to prove that DEMON holds these properties as-
suming a constant random seed, because this is the crucial feature that enables the
incrementality and ability to be parallelized of DEMON.

PROPERTY 1. At the k-th iteration of the outer loop of DEMON, for all k ≥ 0:

C = Max(
⋃

v=v1,...,vk

C(v)) (2)

where v1, . . . , vk are the nodes visited after k iterations.

Property (1) trivially holds for k = 0, i.e., at initialization stage. For k > 0, assume
that the property holds up to k − 1. Then C contains the maximal local communities of
the subgraph with nodes v1, . . . , vk−1. By always merging a local community C of node
vk into C if we find a superset of it in C, we guarantee that C is added to the result
only if it is not covered by any pre-existing community, and, if added, any pre-existing
community covered by C is removed from C. As a result, after merging all communities
in C(vk) into C in Steps #4-6, the latter is the set of maximal communities covering all
local communities discovered in v1, . . . , vk. Therefore, we can conclude that DEMON
is a correct and complete implementation of the CD problem stated by equation (1).
More generally, denoting by DEMON(G, C) the set of communities C′ obtained by run-
ning the DEMON algorithm on graph G starting with the (possibly non-empty) set of
communities C, the following properties hold.

PROPERTY 2. Correctness and Completeness.
If DEMON(G, C) = C′, where G = (V,E), then

C′ = Max(C ∪
⋃
v∈V
C(v)) (3)

In other words, given a pre-existing set of communities C and a graph G, DEMON re-
turns all and only the communities obtained extending C with the communities found
in G, coherently with the definition of communities given in equation (1).

PROPERTY 3. Determinacy and Order insensitivity.
There exists a unique C′ = DEMON(G, C) for any given G and C, disregarding the order
of visit of the nodes in G.

This is a direct corollary of property (2) and of the uniqueness of the set Max(S) for
any set of sets S, under the assumption that the set of local communities C(v) is also
uniquely assigned, for any node v. Therefore, the order in which the nodes in G are
visited by DEMON is irrelevant.

PROPERTY 4. Compositionality. Consider any partition of a graph G into two sub-
graphs G1, G2 such that, for any node v of G, the entire ego network of v in G is fully
contained either in G1 or G2. Then, given an initial set of communities C:

DEMON(G1 ∪ G2, C) = Max(DEMON(G1, C) ∪DEMON(G2, C)) (4)

This is a consequence of two facts: i) each local community C(v) is correctly computed
under the assumption that the subgraphs do not split any ego network, and ii) for any
two sets of sets S1,S2, Max(S1 ∪ S2) = Max(Max(S1) ∪Max(S2)).

PROPERTY 5. Incrementality. Given a graph G, an initial set of communities C
and an incremental update ∆G consisting of new nodes and new edges added to G,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

where ∆G contains the entire ego networks of all new nodes and of all the pre-existing
nodes reached by new links, then

DEMON(G ∪∆G, C) = DEMON(∆G,DEMON(G, C)) (5)

This is a consequence of the fact that only the local communities of nodes in G affected
by new links need to be reexamined, so we can run DEMON on ∆G only, avoiding to
run it from scratch on G ∪∆G.

Properties (4) and (5) have important computational repercussions. The composition-
ality property entails that the core of DEMON algorithm as described in subsection 4.1
is highly parallelizable, because it can run independently on different fragments of the
overall network with a relatively small combination work. Each node of the computer
cluster needs to obtain a small fragment of the network, as small as the ego network of
one or a few nodes. The Map function is simply the LP algorithm. The incrementality
property entails that DEMON can efficiently run in a streamed fashion, considering
incremental updates of the graph as they arrive in subsequent batches; essentially, in-
crementality means that it is not necessary to run DEMON from scratch as batches of
new nodes and new links arrive: the new communities can be found by considering only
the ego networks of the nodes affected by the updates (both new nodes and old nodes
reached by new links). This does not trivially hold for the Merge function presented
in subsection 4.2, therefore the actual parallel implementation of DEMON is left as
future work. However, different and simpler Merge functions can be define to combine
the results provided by the core of the algorithm, thus preserving its possibility to scale
up in a parallel framework.

4.5. Complexity
We now evaluate the time complexity of our approach. DEMON core (Section 4.1) is
based on the Label Propagation algorithm, whose complexity is O(n + m) [Raghavan
et al. 2007], where n is the number of nodes and m is the number of edges. LP is
performed once for each node. Let us assume that we are working with a scale free
network, whose degree distribution is pk = k−α. This means that there are n

kα nodes
with degree k. If K is the maximum degree, the complexity would be

∑K
k=1(n

kα × (k +
k(k−1)

2)) because for each node of degree k we have an ego network of k nodes and at
worst k(k−1)

2 edges. This number is very small for the vast majority of nodes, being
the degree distribution right skewed, thus many nodes have k = 1, thus contributing
O(0) to the complexity; or k = 2, thus contributing O(1). We omit the solution of the
sum with the integral and we report that the complexity is then dominated by a single
term, ending up to beO(nK3−α). This means that the higher the α exponent, the faster
is DEMON: with α = 3 we have few super-hubs for which we basically check the entire
network few times and the rest of nodes add nothing to the complexity; with α = 2
we have many high degree nodes and we end up with higher complexity, but still sub-
quadratic in term of nodes (as, with α = 2, K << n).

It has to be noted that this complexity evaluation holds only for the core of the
DEMON algorithm. The FlatOverlap function is more complex, as it has to merge usu-
ally thousands of communities. Currently, we have not developed an efficient solution
to this problem, that is then quadratic in the number of nodes and dependent on the ε
parameter.

5. EXPERIMENTS
In this section we investigate the performance improvement that DEMON provides
over the state of the art of community discovery. First, in Section 5.1 we generate syn-
thetic networks with an established network benchmark generator [Lancichinetti and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Parameter Description Value
N Number of nodes 1,000
k Average degree 25
Max k Maxiumum degree 50
µ Mixing 0.01
Min c Minimum community size 20
Max c Maximum community size 50
On Number of overlapping nodes 500
Om Number of communities of overlapping nodes 3

Table I: Parameter choice for the benchmark analysis.

Fortunato 2009a] to evaluate the quality of the community coverage with a known ar-
tificial community structure, as a standard robustness check. Then, we switch to three
real world networks in Section 5.2, namely networks extracted from bill co-sponsorship
in the US Congress, the Internet Movie Database and Amazon. We also provide some
examples of the insights that is possible to extract from the flat overlap communities
extracted with DEMON (Section 5.3) as well as from the hierarchical version of the
algorithm (Section 5.4).

The selected competitors for our assessment are: Hierarchical Link Clustering
(HLC) [Ahn et al. 2010], that has been proven able to outperform all the overlapping
algorithms, including the k-clique Propagation algorithm by Palla et al [Derényi et al.
2005]; and two overlapping algorithms, the first based on Label Propagation (SLPA
[Xie and Szymanski 2012], [Xie et al. 2011]) and the second on non-negative matrix
factorization (BigClam [Jaewon and Leskovec 2013]).

The experiments were performed on a Dual Core Intel i7 64 bits @ 2.8 GHz, equipped
with 8 GB of RAM and with a kernel Linux 3.0.0-12-generic (Ubuntu 11.10). The code
was developed in Java and it is available for download with the network datasets
used2. For performances purposes, we mainly refer to the biggest dataset, i.e. Ama-
zon: the core of the algorithm (Section 4.1) took less than a minute, while the Merge
function (Section 4.2) with decreasing ε values can take from one minute to one hour.

5.1. Performances on Benchmark Networks
In this section we assess the quality of the community coverage extracted with
DEMON using synthetic benchmark networks. The usage of the benchmark networks
is useful as we can plug a known community structure and evaluate how well the algo-
rithm is able to uncover it. Of course there are several limitations: as we saw in Section
2 there are many different community definitions and benchmark networks can only
cover a few. This problem is solved by checking the community discovery quality also
in real world networks, and we do it in Section 5.2.

Another problem is that usually benchmark networks are generated in very sim-
ple scenarios, i.e. assuming that the network is unweighed, undirected and with non-
overlapping community. For this reason, we adopt a benchmark network generator
that is able to provide directed, weighted and overlapping networks, that has been
introduced in [Lancichinetti and Fortunato 2009a].

For each community discovery algorithm we want to test, we generate 200 bench-
mark networks with a known community structure. The generator developed in [Lan-
cichinetti and Fortunato 2009a] requires to specify how many overlapping nodes are
in the networks and to how many communities they belong. The parameter choice for
the benchmark has been reported in Table I for experiment repeatability purposes.

2http://www.michelecoscia.com/?page id=42

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

 0

 5

 10

 15

 20

 25

 30

 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

#
 o

f
R

e
s
u
lt
s

F-Measure

DEMON

(a) DEMON

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13

#
 o

f
R

e
s
u
lt
s

F-Measure

HLC
SLPA

BigClam

(b) Other Methods

Fig. 3: The f-measure distribution for the 200 tested benchmark networks.

The generator outputs the network and the communities each node belongs to. Given
this information, we can calculate the f-measure between the coverage returned by the
community discovery and the real communities of the benchmark network.

Since this is a many-to-many matching problem we adopt a simple strategy of match-
ing the discovered and the original communities. For each discovered community we
calculate the f-measure with all the real communities. The community that maximizes
the f-measure is the corresponding community and we use that to calculate the aver-
age f-measure of the community coverage.

We report in Figure 3 the results of our evaluation. Figure 3 reports for how many
benchmark networks (y axis) we obtained a given value of f-measue (x-axis). Figure
3(a) reports the distribution for DEMON, while Figure 3(b) reports for all the other
methods. We can see from the x axis of the two figures that DEMON clearly performs
on average significantly better than the other tested algorithms, although it is less
stable as its performance is 0.6 ± 0.1 while the other methods’ deviation spans from
0.01 to 0.03. In any case, from Figure 3 we can conclude that DEMON is able to create
a much clearer one to one correspondence with the communities in the benchmark
networks.

5.2. Performances on Real-World Networks
We make use of three networked datasets, representing very different phenomena. We
first concentrate on evaluating the quality of a set of communities discovered in these
datasets, comparing the results with those of other competing methods in terms of the
predictive power of the discovered communities. Since real world data are enriched
with annotated information, we measure the ability of each community to predict the
semantic information attached with the metadata of the nodes within the community
itself. This annotated information is an external explicit information about the latent
labels attached to the nodes which drive their connectivity, as explained in the intro-
duction and in Section 3.

Next, we assess the community quality using a global measure of community co-
hesion, based on the intuition that nodes into the same community should possess
similar semantic properties in terms of attached metadata.

Note that we are not able to provide the analytic evaluation for Amazon dataset: for
that network HLC algorithm was not able to provide results due to memory consump-
tion problems, while SLPA was not able to conclude in reasonable times.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Network |V | |E| k̄
Congress 526 14,198 53.98
IMDb 56,542 185,347 6.55
Amazon 410,236 2,439,437 11.89

Table II: Basic statistics of the studied networks.

We tested our algorithms on three real world complex networks extracted from avail-
able web services of different domains. A general overview about the statistics of these
networks can be found in Table II, where: |V | is the number of nodes, |E| is the number
of edges and k̄ is the average degree of the network. Congress and IMDb networks are
similar to the ones used in [Ahn et al. 2010], generally updating the source dataset
with a more recent set of data, and we refer to that paper for a deeper description of
them. The networks were generated as follows:

Congress. The network of legislative collaborations between US representatives of
the House and the Senate during the 111st US Congress (2009-2011). We downloaded
the data about all the bills discussed during the last Congress from GovTrack3, a web-
based service recording the activities of each member of the US Congress. The bills are
usually co-sponsored by many politicians. We connect politicians if they have at least
75 co-sponsorships and delete all the connections that are created only by bills with
more than 10 co-sponsors. Attached to each bills in the Govtrack data we have also
a collection of subjects related to the bill. The set of subjects a politicians frequently
worked on is the qualitative attribute of this network.

IMDb. We downloaded the entire database of IMDb from their official APIs4 on
August 25th 2011. We focus on actors who star in at least two movies during the years
from 2001 to 2010, filtering out television shows, video games, and other performances.
We connect actors with at least two movies in which they both appear. This network
is weighted according to the number of co-appearances. Our qualitative attributes are
the user assigned keywords, summarizing the movies each actor has been part of.

Amazon. We downloaded Amazon data from the Stanford Large Network Dataset
Collection5. In this dataset, frequent co-purchases of products are recorded for the
day of May 5th 2003. We transformed the directed network in an undirected version.
We also downloaded the metadata information about the products, available in the
same repository. Using this metadata, we can define the qualitative attributes for each
product as its categories.

We first assess DEMON performances using a classical prediction task. We attach
the community memberships of a node as known attributes, then its qualitative at-
tributes (real world labels) as target to be predicted; we then feed these attributes to a
state-of-the-art label predictor and record its performance. Of course, a node may have
one or more known attributes, as we are dealing with overlapping community discov-
erers; and it may have also one or more unknown attributes, as it can carry many
different labels.

For this reason, we need a multi-label classifier, i.e. a learner able to predict mul-
tiple target attributes [Tsoumakas and Katakis 2007]. We chose to use the Binary
Relevance Learner. The BRL learns |L| binary classifiers Hl : X → {l,¬l}, one for
each different label l ∈ L. It transforms the original data set into |L| data sets Dl that
contain all examples of the original data set, labeled as l if the labels of the original
example contained l and as ¬l otherwise. It is the same solution used in order to deal

3http://www.govtrack.us/developers/data.xpd
4http://www.imdb.com/interfaces
5http://snap.stanford.edu/data/index.html

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Measure Network DEMON HLC BigClam SLPA

F-Measure Congress 0.21275 0.14740 0.08987 0.03461
IMDb 0.44252 0.43078 0.38520 0.35431

Accuracy Congress 0.10351 0.08038 0.04420 0.01670
IMDb 0.34106 0.38113 0.33373 0.32011

Table III: The F-Measure scores for Congress and IMDb dataset and each community
coverage.

Network Demon HLC BigClam SLPA
|C| ¯|c| |C| ¯|c| |C| ¯|c| |C| ¯|c|

Congress 425 63.3671 1,476 4.5867 99 19.4545 2 263
IMDb 14,004 12.6824 88,119 8.3426 16,411 7.66462 6,717 8.7688

Table IV: Statistics of the community set returned by the different algorithms.

with a single-label multi-class problem using a binary classifier. We used the Python
implementation provided in the Orange software6. For time and memory constraints
due to the BRL complexity, for IMDb we used as input only the biggest communities
(with more than 15 nodes) and eliminating all nodes that are not part of any of the
selected communities.

Multi-label classification requires different metrics than those used in traditional
single-label classification. Among the measures that have been proposed in the liter-
ature, we use the multi-label version of the standard Precision and Recall measures.
Let Dl be our multi-label evaluation data set, consisting of |Dl| multi-label examples
(xi, Yi), i = 1..|Dl|, Yi ⊆ L. Let H be our BRL multi-label classifier and Zi = H(xi) be
the set of labels predicted by H for xi. Then, we can evaluate Precision and Recall of
H as:

Precision(H,Dl) =
1

|Dl|

|Dl|∑
i=1

|Yi ∩ Zi|
|Zi|

,

Recall(H,Dl) =
1

|Dl|

|Dl|∑
i=1

|Yi ∩ Zi|
|Yi|

.

We then derive the F-measure from Precision and Recall. We also calculate the
multi-label equivalent of Accuracy, that is:

Accuracy(H,Dl) =
1

|Dl|

|Dl|∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

.

These multi-label evaluations are described in [Godbole and Sarawagi 2004]. The
results are reported in Table III and show that DEMON comes in first for most tests,
and in second just in one case. We did not test Amazon network as HLC was not able
to provide results due to its complexity and further the BRL classifier was not able to
scale for the overall number of nodes and labels.

For IMDb dataset, HLC was able to outscore DEMON in Accuracy. However, there
is an important distinction to be made about the quantity of the results: if the com-

6http://orange.biolab.si/

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

V
a
lu

e
 /
 R

a
ti
o

ε

Precision

Recall

F-Measure

Number of Communities

(a) Congress

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

V
a
lu

e
 /
 R

a
ti
o

ε

Precision

Recall

F-Measure

Number of Communities

(b) IMDb

Fig. 4: Precision, Recall, F-Measure and number of communities for different ε values.

munity discovery returns too many communities, then it is difficult to actually extract
useful knowledge from them. We reported in Table IV the basic statistics about the
community coverages returned by the algorithms: number of communities (|C|) and
average community size (¯|c|). For DEMON, we report the statistics of the communities
extracted with ε = 0. As we can see, DEMON scores are achieved returning 70-80%
less communities than HLC.

We report in Table IV the results for ε = 0. However, we vary the ε threshold and
see what happens to the number of communities and to the quality of the results. We
report the results in Figure 4. We can see that for both Congress and IMDb the Pre-
cision, Recall and F-Measure scores remain constant (and actually F-Measure peaks
at ε = 0.076 and ε = 0.301 for Congress and IMDb respectively) before falling for in-
creasing ε values, while the relative number of communities dramatically drops. For
Congress, we have the maximum F-Measure with only 175 communities; while for
IMDb the F-Measure peaks with 6,508 communities (in both cases, less than 50% of
the communities at ε = 0 and than an order of magnitude of HLC).

A final consideration is needed about the size distribution of the communities de-
tected by DEMON and the other community discovery algorithms. In Figure 5 we
depicted the community size distribution for DEMON and BigClam for the IMDb
network. While Bigclam returned more or less the same number of communities of
DEMON, we can see that these communities are concentrated in the head of the dis-
tribution, i.e. they are on average very small. This is especially true if we consider that
these small communities mostly disappear for increasing ε thresholds. Communities
smaller than a handful nodes are usually less significant and they are often the results
of an artefact of the algorithm.

We can conclude that DEMON with a manageable number of medium-sized com-
munities is able to outperform more complex methods and the choice of ε can make
the difference in obtaining a narrower set of communities with the same (or greater)
overall quality.

As presented at the beginning of this section, the networks studied here possess
qualitative attributes, i.e. a set of annotations attached to each node. Assuming that
these qualitative attributes correspond to the node’s latent factors, we assume that
“similar” nodes share more qualitative attributes than dissimilar nodes. This procedure
is not standard in community discovery results evaluation. Usually authors prefer
to use the established measure of Modularity. However, Modularity is strictly (and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

 1

 10

 100

 1000

 10000

 1 10 100 1000

c
o

u
n

t(
|C

|)

|C|

BigClam
Demon ε = 0.0
Demon ε = 0.3

Fig. 5: The distribution of the community sizes for DEMON and BigClam in the Ama-
zon network.

exclusively) dependent on the graph structure. What we want evaluate is not how a
graph measure is maximized, but how good is our community coverage in describing
real world knowledge about the clustered entities.

We quantify the matching between a community coverage and the metadata by eval-
uating how much higher are on average the Jaccard coefficients of the set of qualitative
attributes for pair of nodes inside the communities over the average of the entire net-
work, or:

CQ(P) =

∑
(n1,n2)∈P

|QA(n1)∩QA(n2)|
|QA(n1)∪QA(n2)|∑

(n1,n2)∈E
|QA(n1)∩QA(n2)|
|QA(n1)∪QA(n2)|

,

where P is the set of node pairs that share at least one community,QA(n) is the set of
qualitative attributes of node n and E is the set of all edges. If CQ(P) = 1, then there
is no difference between P and the average similarity of nodes, i.e. P is practically
random. Lower values implies that we are grouping together dissimilar nodes, higher
values are expected for an algorithm able to group together similar nodes.

To calculate the Jaccard coefficient for each pair of the network is computationally
prohibitive. Therefore, for IMDb we chose a random set of 400k pairs. Moreover, CQ is
biased towards algorithms returning more communities. For this reason, we just col-
lected random communities from the community pool, trying to avoid too much overlap
as we want also to maximize the number of nodes considered by CQ (i.e. we try not to
consider more than one community per node). We apply this procedure for each algo-
rithm and calculated the CQ value. We repeated this process for 100 iterations and we
report in Table V the average value of the CQ obtained. Also in this case, DEMON was
able to outperform all the other algorithms in three out of four cases, ending up second
in one case, this time to BigClam instead of HLC.

We also calculated the Overlapping Mutual Information between the set of commu-
nities selected as described above and the collection of labels attached to the nodes.
Traditional Mutual Information is not defined for a multi-label setting. Some re-
searchers defined a Normalized Mutual Information for this purpose [Lancichinetti
et al. 2009]. However, further research [McDaid et al. 2011] pointed out that this ver-
sion of the Normalized Mutual Information has some drawbacks, namely its unintu-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

Measure Network DEMON HLC BigClam SLPA

CQ Congress 1.1792 1.1539 1.2737 0.9508
IMDb 5.6158 5.1589 0.5954 0.2020

ONMI Congress 0.0172 0.0083 0.0051 0.0127
IMDb 0.0536 0.0429 0.0280 0.0234

Table V: The Community Quality scores for Congress and IMDb dataset and each
community coverage.

Fig. 6: A representation of parts of the two communities surrounding our case study in
the amazon network.

itive behaviour. For this reason, we used the measure defined in [McDaid et al. 2011]
and we refer to it as “ONMI”. The results of our experiments are again reported in Ta-
ble V. This time, we can observe that DEMON is able to outperform all the considered
alternatives.

5.3. Overlapping Communities
In this section we present a brief case study using the communities extracted for the
previously exposed evaluation of DEMON, that uses the FlatOverlap function to merge
the communities. We focus on the Amazon network. Aim of the section is to demon-
strate that the overlap between the extracted communities carries meaningful infor-
mation. By analysing the overlap, we can have practical applications in the extraction
of knowledge from real world scenarios. In the next section we focus instead on the
hierarchy of the communities, rather than their overlap.

In the Amazon network to have different communities for each item is very useful. A
recommendation system is able to better discern if a user may be interested in a prod-
uct or not given that he bought something else; however being part of one community
of products does not mean that that particular community describes all aspects of a
particular product.

Let us consider, as an example, the case of Jared Diamond’s best selling book “Guns,
Germs, and Steel: The Fates of Human Societies”. Clearly, it is difficult to say that
the people interested in this book are always interested in the same things. Checking
the communities to which it belongs, we find two very different big communities (a
depiction of the two communities is provided by Figure 6). These communities have
some sort of overlap, however they can be characterized by looking at the products
that appear exclusively in one or in the other. In the first one we find books such as:
“Beyond the State: An Introductory Critique”, “The Econometrics of Corporate Gov-
ernance Studies” and “The Transformation of Governance: Public Administration for

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Rank Level 0 Level 1 Level 2
1 Sen. Com. on Commerce, Science, and Transp. Sen. Com. on Foreign Relations Sen. Com. on Commerce, Science, and Transp.
2 Sen. Com. on Foreign Relations Sen. Com. on Commerce, Science, and Transp. Sen. Com. on Indian Affairs
3 International scientific cooperation Sen. Spec. Com. on Aging Sen. Spec. Com. on Aging
4 Office of Science and Technology Policy Sen. Com. on Environment and Public Works Sen. Com. on Health, Education, Labor, and Pensions

Table VI: The top four topics of one community in the Congress network across the
hierarchy.

Twenty-First Century America”. This is clearly a community composed mainly by pur-
chases made by the people more interested in the socio-economic aspects of Diamond’s
book. The second community hosts products such as: “An Introduction to Metaphysics”,
“Aristophanes’ Clouds Translated With Notes and Introduction” and “Being and Di-
alectic: Metaphysics and Culture”. This second communities is apparently composed
by the purchases of customers more attracted by the underlying philosophical impli-
cations of Diamond’s study. Products in one communities may have something in com-
mon, but they are part of two distinct and very well characterized groups, and the ones
in one group are not expected to be found in the other.

This is of course one of the many cases. We report as an additional example the two
communities around the historical novel “The Name of the Rose” by Umberto Eco: one
community is characterized by history related products (such as “Ancestral Passions :
The Leakey Family and the Quest for Humankind’s Beginnings”), the other by costume
fiction (for example the 1932 Dreyer’s movie “Vampyr”).

5.4. Hierarchical Communities
The aim of this section is to demonstrate that, besides the overlap, also the hierarchy
of the extracted communities carries meaningful information. In this case we focus on
the Congress network, as the US Congress has a particular structure that is easy to
confront with. In the US, the Congress is divided in two parts: the House and the Sen-
ate. Members of the House are not members of the Senate and vice versa. Then, inside
both the House and the Senate, there are several subcommittees, each with a different
focus. We expect to find members of similar subcommittees in the communities at the
lower level of the hierarchy, and just two large communities at the top of the hierarchy:
the community of the House and the community of the Senate.

We report in Table VI the first four topics of a particular community across the entire
hierarchy. As we can see, at the bottom level this community is clearly a senate com-
munity composed by a small group of senators very focused on science and technology.
In the intermediate and top level, the community merges with more and more general
communities from the senate. At level 1 is still focused on broader social issues, while
at level 2 it is basically composed by almost any senate committee.

At level 2, we expected to find only two communities. We found, instead, 28 of them.
However, these 28 communities are easily split into the two expected groups with little
overlap. Since DEMON does not return any community with less than three nodes, it
does not create the additional hierarchy level with the two nodes representing the
House and the Senate communities.

6. THE OVERLAP IN SOCIAL NETWORKS
6.1. Explaining the Overlap
As we saw in the previous sections and in countless other examples in literature, over-
lapping communities are ubiquitous in many social and complex networks. We chose
as our explanation of the overlap the fact that many different latent factors drive the
nodes’ connectivity. Nodes are collections of latent labels and they tend to connect with
nodes with similar labels. This is the assumption we share with the creators of the
BigClam algorithm [Jaewon and Leskovec 2013].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

Network Nodes Edges Facebook Twitter Foursquare
Facebook 2,081 5,618 1 0.57 0.94
Twitter 3,745 31,638 0.32 1 0.85
FourSquare 5,783 42,691 0.34 0.55 1
Total 7,461 79,947 - - -

Table VII: The statistics of our multidimensional network per dimension.

This corresponds to the most successful explanation used for overlapping communi-
ties: in a network there are different types of relations whose interplay brings together
people from different communities (the starting assumption of the HLC algorithm
[Ahn et al. 2010]). For example, one person is part of the community of her college
mates and also of the sport team she practices. Several of her team-mates may be also
college mates, generating an overlap between the two communities. In this section we
do not focus on a systematic proof of this theory, that goes beyond the scope of this pa-
per. We provide, instead, empirical evidences of this theory, along with the proof that
DEMON is able to correctly detect actual overlap.

To do so, we need to add context information to the relationships connecting two
people. One of the most important approach to this problem in literature involves us-
ing multidimensional networks. Multidimensional networks are networks in which
we have multiple different relations [Berlingerio et al. 2012]. Community discovery
in multidimensional networks is a problem studied in [Berlingerio et al. 2011] and
it requires specialized multidimensional community discovery algorithms. DEMON is
not a multidimensional community discovery algorithm, so we need to create a special
analytic setting.

We create a multidimensional network by joining three different social networks:
Facebook, Twitter and Foursquare. We were able to crawl the relationships of the same
set of users in these three social media websites. Table VII records some statistics
about the topology of the three social networks and their aggregate multidimensional
network. For each dimension of the network we report the number of nodes and edges
appearing in it and the node overlap with the other network dimensions.

We then applied DEMON to each dimension of the network separately. The algo-
rithm found overlapping communities for each dimension of the network without in-
formation about the edges from the other dimensions. The aim of our analysis is to
examine communities with a large overlap in one dimension and verify the commu-
nity affiliations in the other dimensions of the network of the nodes belonging to these
two communities.

An example of this analysis is depicted in Figure 7. In Figures 7(a-e) we depicted
the same set of 32 nodes with the edges connecting them in the Facebook dimension.
Figures 7(a-b) depicts two communities extracted by DEMON in the Facebook dimen-
sion by colouring in blue the nodes belonging to them, leaving in white the remaining
nodes. We can see that the two communities share an overlap of six nodes.

In Figures 7(c-d) we depict two overlapping communities in the FourSquare dimen-
sion (highlighted with a brown color). Please note that the actual edges depicted are
from the Facebook network, making the comparison of the nodes’ community affilia-
tions more clear. We can see that the two FourSquare communities are still overlap-
ping, but with different common elements: by interacting with their Facebook friends
that are part of the overlap in the Facebook direction, some users visit the same places
of other users that are not directly their friend, creating a new community.

Finally, in Figure 7(e) we have the community extracted from Twitter network (light
blue color). We can see that, in Twitter, the two overlapping communities are actually
one single community, with the exception of some nodes that do not use the Twitter

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

(a) Facebook #1 (b) Facebook #2

(c) FourSquare #1 (d) FourSquare #2

(e) Twitter

Fig. 7: The overlapping communities in the three dimensions of the network.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

J ∗
(i
∪

j,
z)

JF (i, j)
Fig. 8: The relationship between JF (i, j) and J∗(i ∪ j, z) for the communities in the
Facebook dimension.

service. The overlap in the Facebook dimension is likely to be playing a role here: even
if user a is not friend of user b, he still may be interested in user b’s tweets, as many of
user a’s friends are friend with user b.

This is only one example out of many that can be found. To prove this, we took
each community couple (i, j) out of the 367 communities we found in the Facebook
dimension. We calculated the Jaccard index JF (i, j) of the two communities, i.e. their
degree of overlap. Then, we joined the two communities and we calculated the Jaccard
index between the community union i ∪ j and each community in the Twitter and
Foursquare dimension, i.e. how much the two overlapping communities are part of a
single community in another dimension. We refer to this quantity as J∗(i ∪ j, z). We
plot the relationship between JF (i, j) and J∗(i∪ j, z) in Figure 8. Since many couples of
communities may have the same JF (i, j) value, we took the average of all J∗(i∪j, z) for
each JF (i, j) value. As we can see, the larger the overlap in the Facebook dimension, the
more the two communities are included in a single community in another dimension.

6.2. The DEMON-based Explanation of Communities
In the previous sections, we saw that the approach implemented by DEMON is able
to better uncover the community structure implied in real world networks. We can
conclude that there is a correlation between how the overlap in communities forms in
the real world and how DEMON is able to detect the overlap. As a consequence, by
explaining how DEMON detects the overlap we may have an insight about how the
overlap works in the real world.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

Algorithm 4 The pseudo-code of the NeGen DEMON.
Require: α, β, γ, |V |
Ensure: set of nodes and edges G = (V,E)
1: V ← POWERLAW (α)
2: SORTDEGDESC(V)
3: for all v ∈ V do
4: if deg′(v) > 1 then
5: n← deg′(v)
6: deg′(v)← 0
7: N ← RANDOMSAMPLE(V, n)
8: E ← CONNECTNEIGHBORS(v,N)
9: E ← E ∪ COMMUNITIES(v,N, β, γ)
10: UPDATE(deg′(N))
11: end if
12: end for
13: return G

We decided to translate this idea into a generative model. In other words, we can
use the principle of DEMON to generate synthetic networks. As a by-product, we will
have benchmarks for other overlapping community discovery algorithms that reflect
better the overlap mechanics of social networks, when these mechanics matches with
our theory of connectivity driven by latent factors.

This is a useful track of research as most of the benchmark networks for commu-
nity discovery do not generate overlapping communities. The benchmark network pre-
sented in [Lancichinetti and Fortunato 2009a] does, and we used it in the previous
section. However, there are some shortcomings included in that method. First, it is
mandatory to specify in how many communities the overlapping nodes lie, and each
node will belong to exactly the same number of communities, which is unrealistic. Sec-
ond, it is mandatory to specify how many nodes are part of more than one community
and how many are not, an information that is difficult to understand if we want to
model real world networks.

DEMON starts from the assumption that communities are generated locally around
each node. Therefore, it expects to find in the ego network of each node a set of well-
separated semi-cliques. We describe the Network Generator based on DEMON in Al-
gorithm 4. First, for each v ∈ V we extract its number of neighbours, by generating a
power law degree distribution with exponent α (step #1). So, for each node v we keep
in deg′(v) the number of connections that v is accepting.

Then we cycle over the nodes, starting from the ones with higher degree (steps #2-
3). We first check that the node v is still accepting connections (step #4). In steps #5-7
we randomly select from V n = deg′(v) nodes that will be neighbours of v, and we
set deg′(v) = 0. We connect these n nodes with v (step #8) and then we generate the
communities around v using the function COMMUNITIES (step #9). Of course this
will modify the number of connections that can be still attached to the extracted nodes,
thus we update their deg′ values in step #10.

How we create the local communities in the ego network is the task of the
COMMUNITIES function, and it pseudocode is reported in Algorithm 5. First we
define the distribution of the community size around a node. We assume this distri-
bution to be normal with an average equal to β. Then, for each community we extract
randomly a number of nodes equal to its size and we connect them with probability γ
(that should be larger than 0.5).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

Algorithm 5 The COMMUNITIES routine of NeGen DEMON.
Require: v, N , β, γ
Ensure: set of edges E′
1: C ← NORMAL(v, β)
2: for all c ∈ C do
3: m← RANDOMSAMPLE(N, size(c))
4: E′ ← RANDOMCONNECT (m, γ)
5: end for
6: return E′

Using this algorithm, it is possible to generate well-separated local communities in
the ego networks of each node. These communities will eventually overlap when each
neighbour of a previously considered node will generate its own local communities.

7. CONCLUSION AND FUTURE WORK
In this paper we proposed to see the emergence of overlapping communities in com-
plex networks as the effect of latent factors driving nodes’ connectivity. Based on this
assumption, we created a new method for solving the problem of detecting this latent
knowledge from significant communities in complex networks. We propose a demo-
cratic approach, where the peer nodes judge if their neighbours should be clustered
together. We extended previous work by creating a consistent theoretical ground for
our method. We extended the algorithm to find hierarchical communities and we have
provided evidences that the underlying assumption of the work could be correct.

We have shown in the experimental section that this method allows a discovery of
communities in different real world networks collected from information rich datasets.
The quality of the overlapping coverage, a community organization that allows nodes
to be in different communities at the same time, is improved w.r.t state-of-the-art algo-
rithms, evaluated using both a standard synthetic network generator and real world
networks, in which we use the communities to predict the metadata attached to the
nodes. We also show that the performances of the algorithm are useful to shed some
light about how and why social communities are overlapping, by analysing a multidi-
mensional network and providing the intuition that DEMON can give us about how
overlapping communities form.

Many lines of research remain open for future work, such as an efficient parallel
implementation that may make DEMON the first community discovery algorithm able
to scale to billions of nodes; different merging strategies that may further improve
the quality of the results, or just have an improved time efficiency; different hosted
algorithms can be used instead of the Label Propagation algorithm in the inner loop
of DEMON, to extract communities according to different definitions.

REFERENCES
Yong-Yeol Ahn, James P. Bagrow, and Sune Lehmann. 2010. Link communities reveal multiscale complexity

in networks. Nature 466, 7307 (June 2010), 761–764. DOI:http://dx.doi.org/10.1038/nature09182
James P. Bagrow and Erik M. Bollt. 2005. Local method for detecting communities. Physical Review E 72, 4

(Oct. 2005), 046108+. DOI:http://dx.doi.org/10.1103/PhysRevE.72.046108
Michele Berlingerio, Michele Coscia, and Fosca Giannotti. 2011. Finding and Characterizing Communities

in Multidimensional Networks. In ASONAM. 490–494.
Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, and Dino Pedreschi. 2012.

Multidimensional networks: foundations of structural analysis. World Wide Web (2012), 1–27.
DOI:http://dx.doi.org/10.1007/s11280-012-0190-4

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

Steffen Bickel and Tobias Scheffer. 2004. Multi-View Clustering. In Proceedings of the Fourth IEEE Interna-
tional Conference on Data Mining (ICDM ’04). IEEE Computer Society, Washington, DC, USA, 19–26.
http://dl.acm.org/citation.cfm?id=1032649.1033432

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of
communities in large networks. J.STAT.MECH. (2008), P10008. doi:10.1088/1742-5468/2008/10/P10008

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered label propagation: a mul-
tiresolution coordinate-free ordering for compressing social networks. In WWW. 587–596.

Aaron Clauset, M. E. J. Newman, and Cristopher Moore. 2004. Finding community structure in very large
networks. Physical Review E 70 (2004), 066111. doi:10.1103/PhysRevE.70.066111

Michele Coscia, Fosca Giannotti, and Dino Pedreschi. 2011. A classification for community discov-
ery methods in complex networks. Statistical Analysis and Data Mining 4, 5 (2011), 512–546.
DOI:http://dx.doi.org/10.1002/sam.10133

Michele Coscia, Giulio Rossetti, Fosca Giannotti, and Dino Pedreschi. 2012. DEMON: a local-first discovery
method for overlapping communities. In KDD. 615–623.

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing on Large Clusters. OSDI
(2004), 137–150. http://www.usenix.org/events/osdi04/tech/dean.html

Imre Derényi, Gergely Palla, and Tamás Vicsek. 2005. Clique Percolation in Random Networks. Physical
Review Letters 94, 16 (April 2005), 160202+. http://dx.doi.org/10.1103/PhysRevLett.94.160202

T. S. Evans and R. Lambiotte. 2009. Line graphs, link partitions, and overlapping communities. Physical
Review E 80, 1 (July 2009), 016105+. DOI:http://dx.doi.org/10.1103/physreve.80.016105

S. Fortunato. 2010. Community detection in graphs. Physics Reports 486 (Feb. 2010), 75–174.
DOI:http://dx.doi.org/10.1016/j.physrep.2009.11.002

Santo Fortunato and Marc Barthélemy. 2007. Resolution limit in community detection. PNAS 104, 1 (Jan.
2007), 36–41. http://dx.doi.org/10.1073/pnas.0605965104

M. Girvan and M. E. J. Newman. 2002. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences 99, 12 (June 2002), 7821–7826.
DOI:http://dx.doi.org/10.1073/pnas.122653799

Shantanu Godbole and Sunita Sarawagi. 2004. Discriminative Methods for Multi-labeled Classification. In
PAKDD. 22–30.

Amit Goyal, Byung-Won On, Francesco Bonchi, and Laks V. S. Lakshmanan. 2009. GuruMine:
A Pattern Mining System for Discovering Leaders and Tribes. ICDE 0 (2009), 1471–1474.
DOI:http://dx.doi.org/10.1109/ICDE.2009.59

Keith Henderson, Tina Eliassi-Rad, Spiros Papadimitriou, and Christos Faloutsos. 2010. HCDF: A Hybrid
Community Discovery Framework. In SDM. 754–765.

Yang Jaewon and Jure Leskovec. 2013. Overlapping community detection at scale: A nonnegative matrix
factorization approach. In WSDM.

Liran Katzir, Edo Liberty, and Oren Somekh. 2011. Estimating sizes of social networks via biased sampling.
In WWW. 597–606.

Abhishek Kumar and Hal Daumé III. 2011. A Co-training Approach for Multi-view Spectral Clustering. In
ICML. 393–400.

Andrea Lancichinetti and Santo Fortunato. 2009a. Benchmarks for testing community detection algorithms
on directed and weighted graphs with overlapping communities. Phys. Rev. E 80, 1 (July 2009), 016118.
DOI:http://dx.doi.org/10.1103/PhysRevE.80.016118

A. Lancichinetti and S. Fortunato. 2009b. Community detection algorithms: A comparative analysis. Physi-
cal Review E 80, 5 (Nov. 2009), 056117–+. DOI:http://dx.doi.org/10.1103/PhysRevE.80.056117

Andrea Lancichinetti, Santo Fortunato, and Jnos Kertsz. 2009. Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics 11, 3 (2009), 033015. http://stacks.
iop.org/1367-2630/11/i=3/a=033015

Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2007. The dynamics of viral marketing. ACM
Trans. Web 1 (May 2007). http://dx.doi.org/10.1145/1232722.1232727

Bo Long, Philip S. Yu, and Zhongfei Zhang. 2008. A General Model for Multiple View Unsupervised Learn-
ing. In Proceedings of the 2008 SIAM International Conference on Data Mining.

Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles in Ego Networks.. In NIPS,
Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Wein-
berger (Eds.). 548–556. http://dblp.uni-trier.de/db/conf/nips/nips2012.html#McAuleyL12

Aaron F. McDaid, Derek Greene, and Neil Hurley. 2011. Normalized Mutual Information to evaluate over-
lapping community finding algorithms. (Oct. 2011). http://arxiv.org/abs/1110.2515

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

Peter J. Mucha, Thomas Richardson, Kevin Macon, Mason A. Porter, and J-P Onnela. 2010. Community
Structure in Time-Dependent, Multiscale, and Multiplex Networks. Science 328, 5980 (2010), 876–878.
http://dx.doi.org/10.1126/science.1184819

M. E. J. Newman. 2006. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences 103, 23 (June 2006), 8577–8582. DOI:http://dx.doi.org/10.1073/pnas.0601602103

Spiros Papadimitriou, Jimeng Sun, Christos Faloutsos, and Philip S. Yu. 2008. Hierarchical, Parameter-Free
Community Discovery. In ECML PKDD. 170–187. DOI:http://dx.doi.org/10.1007/978-3-540-87481-2 12

Pascal Pons and Matthieu Latapy. 2006. Computing Communities in Large Networks Using Random Walks.
J. Graph Algorithms Appl. 10, 2 (2006), 191–218.

Usha N. Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E 76, 3 (Sept. 2007), 036106+.
DOI:http://dx.doi.org/10.1103/PhysRevE.76.036106

Jianhua Ruan and Weixiong Zhang. 2007. An Efficient Spectral Algorithm for Network Community Discov-
ery and Its Applications to Biological and Social Networks. Data Mining, IEEE International Conference
on 0 (2007), 643–648. DOI:http://dx.doi.org/10.1109/ICDM.2007.72

G. Tsoumakas and I. Katakis. 2007. Multi Label Classification: An Overview. International Journal
of Data Warehousing and Mining 3, 3 (2007), 1–13. http://mlkd.csd.auth.gr/publication details.asp?
publicationID=219

Dashun Wang, Zhen Wen, Hanghang Tong, Ching-Yung Lin, Chaoming Song, and Albert-László Barabási.
2011. Information spreading in context. In WWW. 735–744.

J. Xie and B. Szymanski. 2012. Towards Linear Time Overlapping Community Detection in Social Networks.
PAKDD (2012).

Jierui Xie, Boleslaw K. Szymanski, and Xiaoming Liu. 2011. SLPA: Uncovering Overlapping Communities
in Social Networks via a Speaker-Listener Interaction Dynamic Process. In ICDM Workshops. 344–349.

Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Communities based on Ground-
truth. (Nov. 2012). http://arxiv.org/abs/1205.6233

Dengyong Zhou and Christopher J. C. Burges. 2007. Spectral clustering and transductive learning with
multiple views. In Proceedings of the 24th international conference on Machine learning (ICML ’07).
ACM, New York, NY, USA, 1159–1166. DOI:http://dx.doi.org/10.1145/1273496.1273642

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

