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Abstract—The availability of massive network and mobility
data from diverse domains has fostered the analysis of human be-
haviors and interactions. This data availability leads to challenges
in the knowledge discovery community. Several different analyses
have been performed on the traces of human trajectories, such
as understanding the real borders of human mobility or mining
social interactions derived from mobility and viceversa. However,
the data quality of the digital traces of human mobility has a
dramatic impact over the knowledge that it is possible to mine,
and this issue has not been thoroughly tackled so far in literature.
In this paper, we mine and analyze with complex network
techniques a large dataset of human trajectories, a GPS dataset
from more than 150k vehicles in Italy. We build a multiresolution
spatial grid and we map the trajectories to several complex
networks, by connecting the different areas of our region of
interest. We also analyze different temporal slices of the network,
obtaining a dynamic perspective over its evolution. We analyze
the structural properties of the temporal and geographical
slices and their human mobility predictive power. The result
is a significant advancement in our understanding of the data
transformation process that is needed to connect mobility with
social network analysis and mining.

I. INTRODUCTION

The availability of massive network and mobility data from
diverse domains has fostered the analysis of human behaviors
and interactions. Traces of human mobility can be collected
with a number of different techniques. We can obtain Global
Positioning System (GPS) logs, or GSM data referring to
which cell tower a cellphone, carried and used by a person,
was connecting. The result is a huge quantity of data about
tens of thousand people moving along millions of trajectories.

This data availability leads to challenges in the knowledge
discovery community. Several different analyses have been
performed on the traces of human trajectories. For example,
[16], [22]] are two examples of studies able to detect the
real borders of human mobility: given how people move,
the authors were able to cluster different geographical areas
in which people are naturally bounded. Another analysis
example connects mobility with social networking [25], [4].
The fundamental question in these cases is: do people go in
the same places because they can find their friends there or do
people become friends because they go in the same places?

However, there is an important issue to be tackled before
performing any kind of social knowledge extraction from
mobility data. It has been proved that the data quality of the

digital traces of human mobility has a dramatic impact over
the knowledge that it is possible to mine. For example, in
[23]] authors perform a trajectory clustering analysis, with GPS
data that are successively transformed in GSM-like data. They
prove that the knowledge extracted with the semi-obfuscated
data is more prone to data noise and performs worse. The
conclusion is that mobility analysis should be performed with
the high data precision that only GPS is able to provide.

Several open questions are left unanswered, and some of
them represent the main focus of this paper.

The first is connected to the temporal dimension, that is
intrinsically linked to any movement data. For example, in
[22]] authors want to define the borders of human mobility,
but they create a rather static snapshot by putting together
movements without considering when these movements took
place. Also works that consider temporal information usually
use it as a continuum without discontinuity points or phase
transitions.

In the real world, different events may dramatically change
how people move on the territory. Such events may be un-
predictable or not frequent, like natural disasters, but most of
them are not. The most natural regular and predictable event is
the transition between working and non-working days. During
Saturdays and Sundays, people usually abandon their working
mobility routines for different paths, obeying to completely
different criteria. Another example may be organized human
social events, like manifestations in a particular town or sport
events.

The aim of this paper is to systematically prove that to
mine human mobility and to extract from it useful knowledge
is necessary to take into account these phase transitions. A
dataset of undifferentiated trajectories, without taking into
account when they were performed, may lead to increased and
unexpected noise effects, lowering the quality of the results
and, in extreme cases, hiding interesting patterns.

The second open question is orthogonal to the temporal
dimension and it involves the spatial dimension. Given that
we use GPS data, how can we connect it to the territory? In
general, GPS does not need to be mapped on the territory,
as it already provides the coordinates of the person moving.
However, usually we are dealing with two kinds of constraints.
First, we are studying vehicles mobility, thus the “data points”
are not free to move on a bi-dimensional surface, but they are



constrained by the road graph. Second, if we want to apply
social network analysis techniques on these data, such as the
ones applied in [16], [22] namely community discovery over
a network of points in space to find the borders of mobility,
we need to discretize the territory in cells, as it is impossible
to translate a continuous surface into a graph.

These two considerations force us to discretize the contin-
uous human trajectories into a discrete spatial tessellation and
then operate social network analysis on that partition. Should
we use external information about the territory, such as the
political organization in towns and municipalities? Or should
we create a regular grid?

In this paper, we propose an empirical study aimed at
tackling these questions. We collect data from 150k vehicles
moving on a region of Italy, namely Tuscany. First, we address
the temporal dimension problem by analyzing with complex
network techniques our GPS trajectories and then understand
their predictive power of the movements of our observed
vehicles over the time span of a month.

Second, we address the spatial dimension problem by cre-
ating a multiresolution regular grid that covers Tuscany. We
use this grid to generate different network perspectives over
Tuscany mobility: grid cells ¢; and co are connected with a
directed edge if there is at least one trajectory starting from
c1 and ending in co. The edge is then weighted according to
how many trajectories connect the two cells.

Both questions are addressed with the same complex
network analysis technique, namely community discovery.
Community discovery in complex networks aims to detect a
graph’s modular structure, by isolating densely connected sets
of nodes called communities. For the temporal dimension,
the communities observed at time ¢ are used to predict the
communities observed at time ¢+ 1. For the spatial dimension,
we verify how well the community partition of a network
generated with a particular grid resolution is able to describe
the general structure with the minimum amount of information
loss.

In the proposed framework, we generate sets of network
with different criteria (temporal and spatial). We then apply
community discovery on these networks, following our previ-
ous works [17], [6]], to identify the borders of human mobility.
Our focus is to evaluate which temporal perspective and which
grid resolution is leading to the best results. We evaluate
each network results both quantitatively, using different quality
scores, and qualitatively, by looking at the resulting borders
and confronting them with what we know about Tuscany
mobility.

The rest of the paper is organized as follows. In Section
we present the works related to the present paper: the
connections between mobility and social network analysis
and mining. We introduce the community discovery problem
definition and our adopted solution in Section We address
our temporal analysis in Section [V} we map movements using
the political division of the territory, we generated different
temporal slices and we predict the community from one
slice to the other. The creation of the multiresolution grid is
presented in Section[V] Finally Section[VI| concludes the paper
presenting also some future insights.

II. RELATED WORK

As stated in the introduction, there are several works in the
field of human trajectories data mining. A class of these work
is focused on applying frequent pattern mining to mobility
data [13l], [24], even borrowing techniques from biology
mining [9]. A popular application to these techniques is the
privacy-preserving anonymization of human movements [3],
[12]]. Different data sources can be used to obtain mobility
data ranging from GSM [16l, to GPS [17], to RF tags [11].
Sometimes, techniques developed for trajectory mining are
then applied in other scenarios [10]. A good taxonomy for
mining trajectories can be found in [1].

In literature, there are several works exploring the applica-
tion of social network analysis to mobility data. Two examples
are [22]], [L6]. In [22]] for the first time it is proposed to
represent trajectories with a graph, then community discovery
techniques are applied to the graph to discover areas that
are frequently connected by the same set of trajectories. The
mobility data used is the manually submitted information
about the movements of one dollar bills in the US territoryﬂ
In [16] the same approach is implemented, but using GSM
cellphone data: each trajectory is composed by the cell tower
to which a particular device was connected. As stated in the
introduction, the main problems of these approaches is that the
data source leads to unavoidable approximations, significantly
lowering the quality of the results [23]]. We improve over these
works by using a more reliable data source, namely direct GPS
tracks.

Another class of works is more focused on the links between
mobility and social relationships. In [25] a new link prediction
technique is proposed. Link prediction in social network is
the problem of quantifying how much likely is to observe
new connections in a complex network given the current
topology of the graph (see for example [19]). The advancement
proposed in [25] is to use for the prediction not only the
current topology of the graph, but also mobility information
about the nodes of the network. The orthogonal problem is
tackled in [4]: given the social relationships among a set of
individuals, the study aims to predict which trajectories these
individuals will decide to take. Not only GSM data about real
people are used, there are some studies focusing on movements
of virtual spaceships in a massive multiplayer online game,
with a wide “universe” to move in [20]. Our paper is focused
on the prerequisites of this class of works, namely how to
define the movement graph needed for the analyses.

Finally, as community discovery is used as mean to assess
the quality of a network representing human mobility, we
report some references about it. Two comprehensive surveys
about community discovery are [8]], focused on an empirical
evaluation of many different algorithms, and [3]], that aims to
classify the many different community discovery approaches
according to the underlying definition of community they oper-
ate on. Several interesting community discovery algorithms are
[LL8]], (15}, [21], [7], employing different community clustering
strategies. We focus particularly on [18]], as it is the algorithm
we used in the framework presented in this paper.

Uhttp://www.wheresgeorge.com/



This paper is built on previous work [6]. The focus of [6]]
was mainly on analyzing the geographical dimension of our
problem. We extend over it by introducing a temporal analysis
and extended experiments.

III. COMMUNITY DISCOVERY

An important part of our framework is the application of
graph clustering algorithm on our network of trajectories.
For this reason, in this section we introduce the problem of
community discovery in complex networks along with the
solution that we adopted.

An extensive survey, providing more background about
community discovery, can be found in [5]. From [5]] we know
that clustering algorithms can provide extremely different
results, according to their definition of what is a community
in a complex network. For example, modularity maximization
algorithms aim to maximize a fitness function describing how
internally dense are the clusters according to their edges. Other
techniques use random walks to unveil the modular structure
of the network, since the random walker is trapped in denser
areas of the network.

When clustering algorithms enable the multi-level identifi-
cation of “clusters-in-a-cluster”, they are defined ‘“hierarchi-
cal”. With this type of clustering algorithms, we can explore
each cluster at several levels and possibly choose the level
which, for example, best optimize some fitness function. This
is a critical function for mobility networks, as in this scenario
it is necessary to explore borders at different granularity levels:
conglomerates of cities, cities and even neighborhoods.

Among the hierarchical clustering algorithms available in
the literature, we choose the Infomap [[18]], which is one of the
best performing non-overlapping clustering algorithms [8]].

The Infomap algorithm is based on a combination of
information theoretic techniques and random walks. It uses
the probability flow of random walks on a graph as a proxy
for information flows in the real system and decomposes the
network into clusters by compressing a description of the
probability flow. The algorithm looks for a cluster partition
M into m clusters so as to minimize the expected description
length of a random walk. The intuition behind the Infomap
approach for the random walks compression is the following.
The best way to compress the paths is to describe them with a
prefix and a suffix. Each node that is part of the same cluster
M of the previous node is described only with its suffix,
otherwise with prefix and suffix. Then, the suffixes are reused
in all prefixes, just like the street names are reused in different
cities. The optimal division in different prefixes represent the
optimal community partition. We can now formally present
the theory behind Infomap. The expected description length,
given a partition M, is given by:

L(M) is made up of two terms: the first is the entropy
of the movements between clusters and the second is entropy
of movements within clusters. The entropy associated to the
description of the n states of a random variable X that

occur with probabilities p; is H(X) = — >} p;logy p;. In
(1) entropy is weighted by the probabilities with which they
occur in the particular partitioning. More precisely, g is the
probability that the random walk jumps from a cluster to
another on any given step and p; is the fraction of within-
community movements that occur in community ¢ plus the
probability of exiting module . Accordingly, H(Q) is the
the entropy of clusters names, or city names in our intuition
presented before, and H (F;) the entropy of movements within
cluster i, the street names in our example, including the
exit from it. Since trying any possible partition in order to
minimize L(M) is inefficient and intractable, the algorithm
uses a deterministic greedy search and then refines the results
with a simulated annealing approach.

IV. THE TEMPORAL DIMENSION

In this section we explore the temporal issues of the
application of complex network analysis to mobility data.
As a proxy of human mobility, we used a dataset of spatio-
temporal trajectories of private cars consisting of around 10M
trips performed by 150,000 vehicles. These GPS tracks were
collected by Octo Telematics S.p.A., a company that manages
on-board GPS devices and data collection for the car insurance
industry. Each trajectory is represented as a time-ordered
sequence of tuples (id, x, y, t), where id is the anonymized car
identifier, x and y are the latitude and longitude coordinates,
t is the timestamp of the position. The GPS tracks were
collected during a period of one month, from 1st May to 31st
May 2011. The GPS device automatically starts collecting
the positions when the car is turned on and it stops when
it is turned off. The log is transmitted to the server via
GPRS connection. Octo Telematics serves the 2% of registered
vehicles in Italy. In our collection, they collected the traces of
the vehicles circulating in a bounding box containing Tuscany
Region during the period of observation.

To apply complex network analysis on mobility data we
first generalize the spatio-temporal positions by means of a
spatial tessellation. This is already a challenge per se, and we
deal more in deep with it in Section [V} Since in this section
we are focused on the temporal analysis of human mobility
networks, we use a simple, sub-optimal, solution. We focus
on the origin and destination of each travel of each vehicle.
Using the spatial tessellation provided by ISTAT, the statistical
bureau in Italy, we associate each origin (destination) to the
census sector where the corresponding travel began (ended).

After this generalization step we can model human mobility
by means of a graph where the nodes represent the census
sectors and each edge represents the set of travels starting and
ending within the corresponding census sectors. In particular,
an edge connecting the nodes v; and vy is weighted with the
number of travels starting from the sector associated to v
and ending at the sector associated with v,. Moreover, since
we are interested in studying the temporal evolution of the
extracted network, we extracted several networks at different
time intervals. In general, our method consists in selecting
only the trajectories “alive” in the time period of study.

Which time interval should be adopted to analyze mobility
from a temporal perspective? We fixed a minimum temporal
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Fig. 1: Some statistics for the daily network snapshots.

interval of one day and then we generated daily snapshots
of the movement graphs. We depict in Figure |I| some of the
basic statistics of these daily networks. We can see that there
are remarkable differences between weekday and weekend
networks (we recall that May 8th, 15th, 22nd and 29th 2011
were Sundays). Saturdays and Sundays networks usually have
less edges, somewhere between 62-75% of the edges of a
weekday (Figure [T[a)); they have more components, i.e. the
networks are more fragmented, with areas not connecting at
all to each other (Figure [T[b)); and finally their average path
length is significantly higher, May 8th presents a lower peak,
but the whole preceding week was lower than the following,
due to the fact of Italian national holiday of May 1st (Figure
[[c)).

We can conclude that we expect different results from the
weekdays and weekend networks, as their topology is signif-
icantly different. Thus, we considered three distinct intervals
for each week: weekdays, i.e. day from Monday to Friday,
weekends, i.e. Saturday and Sunday, and the whole week,
obtaining 12 networks for the four weeks considered.

A. Weeks, Weekdays and Weekends Network Statistics

We now take a look to the basic statistics of the extracted
networks, as they are able to unveil preliminary differences
between the different network views of the dataset. For a
deeper explanation about concepts such as “connected com-
ponent” or “average path length” we refer to [14]. In Table [I
we reported the following statistics: number of nodes (column
[V]), number of edges (column |E|), average degree (col-
umn Avg Degree), number of connected components (column
|CCY), relative size of the giant component (column GC Size
%), reciprocity (column Reciprocity) and average path length
(column ¢). In each row of the table we grouped three kinds
of networks: Week, Weekdays and Weekends. Each entry is
the average value of the measure of the four networks in each
network type.

As we can see, the number of nodes of the Week net-
works is slightly higher than the number of nodes of the
Weekdays networks. This means that during weekends people
sometimes choose to reach places that were never visited
during weekdays, although in general their destination set
is slightly narrower. A big difference between Weekdays
and Weekend networks is highlighted by the average degree:

during weekends the paths chosen by users are significantly
less than what expected by the smaller set of destinations. This
means that during weekends the same few paths are under a
higher mobility pressure.

Weekends networks appears to be more fragmented (the
networks on average present 69 components against the 26
for Weekdays networks), however almost 98% of destinations
are still part of the network’s giant component. The giant
component size is important because if most of the census
sectors are actually isolated from each other, the community
discovery loses significance. Also, we know that in Weekends
networks we will find 68 very small and isolated communities,
that can be ignored for our analytical purposes.

Reciprocity is the ratio of bidirectional edges over the total
number of edges. This measure is lower during weekends,
implying that in that period of the week people are more likely
to stay in the places they reach. Finally, the average path length
unveils the fact that we are dealing with classical small-world
networks [26]: the average number of edges to be crossed to go
from any node to any other node is below 5. An exception is
represented again by Weekends networks: although the average
path length /¢ is low, it is higher than the other network view,
and with a lower number of nodes. We can conclude that the
long-range connectivity in Weekends network is weaker than
expected.

We depict in Figure [2] the degree distributions of our 12
networks. We colored in red the Week networks, in blue the
Weekend networks and in green the Weekdays networks. The
distributions represent an argument in favor of our chosen
methodology. The three kinds of networks present very similar
degree distributions, while they differ from each other. While
the Weekday networks still can approximate the Week ones,
the same does not hold for the Weekend network, that dra-
matically differ from the previous two. The statement that the
Weekend network cannot be useful in predict general patterns
of the week, and vice versa, proves to be intuitive. We provide
evidences in favor of this statement in Section

B. Evaluation

To evaluate how much the communities discovered in a
particular temporal interval are meaningful, we check if they
are preserved in different time periods, by comparing each
other by means of the measures of precision and recall. We



Network V] [E] Avg Degree | |[CC| | GC Size % | Reciprocity l

Weeks 17468.8 | 218474.0 25.01 20.25 98.8351% 0.276039 4.25788
Weekdays | 16568.2 | 167425.0 20.21 26.00 98.7612% 0.263951 4.50722
Weekends | 13895.5 72055.8 10.37 69.00 97.9868% 0.247907 5.33465

TABLE I: The average statistics of the different network views of the dataset.
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Fig. 2: The cumulative degree distribution of our networks.

call clustering the aggregation of a set of objects into subgroup
and each subgroup is called a cluster. Formally, a clustering C
is the union of its own clusters {Cy,Cs, ..., C,}. Given two
clusters, say C; and Cs, precision and recall are given by the
formulas;

_CinGCsf

|Ch 7

[Cin Gy

|Ca|

R(C1,Cs) P(Cy,Cs)

The recall measures how many of the objects in C are
present in Cy, while the precision measures the proportion of
the object of C'; in the cluster C5. The recall of the set C'y
tends to one when all the elements of C; are present in Cy,
it tends to zero otherwise. The precision of a cluster C; tends
to zero when the proportion of elements of C is small with
respect to the number of element in Cs, and it tends to one
when the cluster C'; contains only elements in C'.

To extend the measures from the cluster level to the global
evaluation of the two clusterings, we propose the following
procedure. First, for each cluster C; in C; we determine a
cluster C’J’- = map(C;) € Co, such that C’J’- maximizes the
intersection with C; among all the clusters in Cy. Then, for
each pair (C;,map(C;)) we determine precision and recall
values. The overall similarity indexes is given by the weighted
average of each pairs:

P(C1,Co) = Y |Ci| P(Ci,map(Cy))

CieCy

R(C1,C2) = ) |CilR(Ci,map(Cy)).
CieCy

C. Experiments

We now take a look at the results of the application of our
workflow to the real world data presented in Section

1) The Human Mobility Borders: Weekdays vs Weekends:
We start by taking a look at the top-level clusters extracted by
the hierarchical version of Infomap algorithm. In Figure [3| we
show a matrix of all the clusterings, for each week and for
each network type (Weekday, Weekend and Whole Week). In
general, the clusters look mostly compact, with the exceptions
of the areas where we can find the highway entrances, as they
are of course catalyst hubs of long-range trips. The white areas
are regions where no trip started or ended and for this reason
are excluded from the network representation. In general, some
useful insights can be extracted to improve human mobility
management, as the merging of Pisa and Livorno provinces
(cluster on the middle-left, light green color in the Weekday
map for the week 1, top left corner of Figure [3): the two cities
are divided only for political reasons, but they are very close
and part of a strongly connected area, as witnessed by the way
GPS traces move. At least on the higher level, those areas need
to coordinate.

In this case, we can exploit the power of the cluster
hierarchy to have a finer description of the mobility borders.
In Figure ] we zoomed into the Pisa-Livorno cluster for the
Weekday network of week 1: on the left side we have the
cluster at the top level of the hierarchy, on the right side the
cluster at the second level. As we can see, at this level the
provinces of Pisa and Livorno are correctly split, meaning that
there is a border at least at the city level, and our framework
is able to detect it by exploring the cluster hierarchy.

Let us now focus on the differences between the Weekdays
and the Weekends clusters. The Weekends clusters look as
compact as the Weekdays clusters and the quantity of dif-
ferences looks lower than expected from the intuition that
the network statistics gave us (see Section . However,
the quality of the differences is very important: in week 1
the Pisa-Livorno cluster expanded and now includes also the
cities of Lucca and Viareggio (black and brown clusters north
of Pisa in Figure |3| respectively), that are naturally separated
from Pisa and difficult to reach. The inclusion is probably
due to a higher rate of long-range trips to neighboring towns
usually difficult to reach, but appealing to spend some free
time during the weekend. Also, the Florence cluster (orange
in Figure 3(a)) is split in two (pink and blue cluster in Figure
[Ib)). These changes are very important qualitatively, as these
clusters involves a large share of all Tuscany trips. In general,
the strong noise effect created by weekend movements is
evident for week 3. The Whole Week clusters tend to look
in general more alike the Weekdays, but Weekend clusters
perturb their borders: the Weekday Lucca cluster (light purple)
is split in three parts in the Weekend cluster and this causes
its disappearance also from the Whole Week clusters, divided
between the pre-existing Florence (blue) and Massa-Carrara-
Viareggio (green) clusters. Similar instances of these problems
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Fig. 3: The Tuscany mobility clusters (top level of the hierarchy).




(a) Weekend 2 Clusters at the highest level of hier-
archy.

(b) Pisa-Livorno Cluster at level 1.

(c) Pisa-Livorno Cluster at the second level of hier-
archy.

Fig. 4: Exploring the second level of hierarchy clusters.

are present in each week, intuitively proving the noisy effect
of weekend trajectories.

2) Weekdays and Weekends Quality Evaluation: We now
evaluate the predictive power quality of the cluster extracted
from the various networks. We make use of the Precision and
Recall measures as defined in Section [V-B] The general pro-
cedure is the following: we consider the clusters extracted in
the network representing the first week and then we calculate
the Precision and the Recall for each of the other networks.
A high score means that the target network contains similar
clustered information, therefore is predictable using the source
network. The results are depicted in Figure [3

To understand how to read Figure [5] let us consider its
leftmost scatter plot: in this case the source clustering is
calculated using each of the Weekday network. Each dot
represent the quality results, according to Precision (x axis)
and Recall (y axis), for each of the other network considered
in this article. The dot color represent the kind of network
to which we are applying the prediction: green for Weekday,
blue for Weekend and red for Week. Since we are dealing with
four weeks and three different network views for each week
(Weekday, Weekend and Week) we have a total of 48 points,
4 of which scores 1 for both Precision and Recall as they are
clusterings applied to themselves: since we are considering
the leftmost plot, the 4 perfect scores are all green dots, each
representing a Weekday clustering applied to itself.

Now we can find evidences about the lower quality of
the Weekend predictions by considering all the three plots.
As we can see, the central plot, the one representing the
prediction results using the Weekend clusters, scores lower
performances for all networks, both in Precision and Recall.
Not only Weekend clusterings are not able to predict Weekday
and Week clustering: they also score poorly in predicting
themselves, proving that from one weekend to another the
trajectories vary significantly, and therefore they cannot be
predicted efficiently using the simple assumption that the same

period in the week should behave in the same way across time.

The other side of the story also holds: not only Weekend
cannot predict with high scores, but it also cannot be predicted.
By considering the leftmost and the rightmost plot, we see that
the distribution of the colors of the dots is not random, but they
are clustered in precise areas of the plot. Focusing on the blue
dots (Weekend), we notice that they always tend to be clustered
in the lower side of the plot, i.e. the one characterized with
lower Recall scores. In conclusion, Weekend clusterings are
behaving like an unpredictable, and unreliable for prediction,
class of phenomena.

However, we also notice that unexpectedly Prediction scores
for blue dots in the leftmost and rightmost plots are not the
lowest in absolute terms. The explanation lies in the nature of
the Week datasets: by definition it also includes the trajectories
originated during weekends. This inclusion is lowering the
Precision scores for the prediction Weekday to Week and from
Week to Weekday. In fact, in the leftmost plot the green
dots (Weekday to Weekday predictions) tend also to score
better according to prediction, while this does not hold for
red dots (Weekday to Week predictions). For the rightmost
plot, being the Week-based prediction affected by the weekend
data, we have a more confused evaluation. We can conclude
the following thing: to integrate weekday data with weekend
data is equivalent to manually introduce noisy data points,
and it should be avoided. It is not true that weekday data can
correct the noise of weekend data, or that weekend data can
somehow compensate or integrate weekday data. If we want
to have reliable models for the majority of human movements,
then we should use only weekday data. If we want to have also
a model for the irregular human movements during weekends,
we need to sacrifice the prediction quality.

3) Systematic vs Occasional Trajectories: To evaluate the
influence of systematic movements over human mobility, we
propose here a method to select the very frequent movements
among the travels of each vehicle. Given a vehicle v we select
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Fig. 5: The Precision and Recall values for the predictions using Weekday (Left), Weekend (Center) and Week (Right).

all the travels associated to v and we cluster them according
to their starts and ends, i.e. the trips starting from similar
places and ending in similar places are aggregated in the
same cluster. To extract the clusters from the set of origins
and destinations of each vehicle we adopt a density based
clustering method, namely OPTICS [2]. OPTICS is one of
the best candidates clustering methods since it is very robust
to noise, it does discover the natural number of clusters in
the dataset analyzed and it can be customized by providing
specific distance functions. In our case, we defined a distance
function based on the relative distance between origin and
destination point of each trajectory. In particular, given two
trajectories ¢ and to with end points respectively (s1,e;) and
(s2,€2), the distance between ¢1 and to is defined as

d(Sl, 82) + d(el, 62)
B) .

The OPTICS algorithm start exploring the dataset by eval-
vating the neighborhood of each trajectory according to the
distance function provided and to a distance threshold €, which
defines a minimum radius around the current object, and a
minimum number of point MinPts expected to be found within
the given radius. When a trajectory has enough neighbors in
its radius, it is said to be a core trajectory and its cluster
is expanded as far as other density points are reachable. In
our experiments we focused on the analysis of very compact
clusters that could represent systematic travels. Thus, we used
a distance threshold of 250m. The cluster with the highest
cardinality is selected as the most frequent and, hence, as
the systematic movement of the vehicle. By repeating this
procedure for all the vehicles, we can select a subset of
movements that are frequently performed by them. Starting
from this subset we apply the same method presented in the
previous sections: the trajectories are generalized to the spatial
tessellation, they are projected in a specific time interval and
a complex network is extracted.

In Figure [6fa) we report the relative distribution of sys-
tematic trajectories in our dataset. For each day, we divide the
number of trajectories classified as “systematic” by the number
of the total trajectories that were followed during that day. We
can see that there is a strong difference between weekdays and
weekends. During weekdays, more than 13% of trajectories
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Fig. 6: The daily distributions of systematic trajectories: for
each day the share of trajectories that are systematic.



are systematic. An exception is Friday, as pre-weekend day,
although always at least 12% trajectories are systematic during
that day. During weekends, these shares drop to around 8.5%
during Saturdays and 7.5% during Sundays. Therefore we can
safely state that our assumption, i.e. that systematic trajectories
are followed more commonly during weekdays, is sustained
by evidence.

The impact of the systematic component of mobility is also
evident from the results of community discovering on these
network. Figure[6[(b) show the measures of precision and recall
resulting from the comparison of the systematic networks
with the networks explored in Section The separation
between weekend prediction and week/weekday prediction is
here even more evident. In general, the values of recall are very
low if compared with Figure 3] This is due to a sparse network
extracted from a limited number of trajectories. We can verify
this by looking at the statistics of the networks extracted from
the systematic trajectories. In Table [[]] we report the same
statistics of Table [I| but for the systematic networks instead
of the networks created with the complete set of trajectories.
We can see that there is an increased number of connected
components (ten times more) and the giant component is
significantly smaller. Each separated component generates an
isolated community, thus greatly lowering the Recall score.
The values of precision, in this case, are neatly separated:
weekday and week networks maintain similar values, whereas
weekend networks have poor prediction performances.

V. THE GEOGRAPHICAL DIMENSION

As we saw in the previous section, given the spatial pre-
cision of GPS points, it is necessary to process the data
in order to generalize neighbor points with a spatial region.
Since the spatial precision of a GPS position can have an
error of few meters, we need to determine the most suitable
generalization for complex network analysis. Our approach
consists in studying the properties of a complex network
extracted from a regular grid composed of regular squares with
edges of the same length.

As a starting point, we consider the bounding box con-
taining our GPS trajectories, i.e. the minimum geographical
rectangle that contains all the points, say h and w respectively
the height and width of the box. Chosen a length [ for the edge
of each cell, we divide the bounding box into a grid of cells
with 7 rows and ¢ columns, where r = [h/l] and ¢ = [w/I].
The resulting grid is aligned with the lower left corner of the
original box.

There are several criteria to partition the territory for a
spatial generalization step. In this research, we focus on the
spatial resolution of a regular division, since it enables us to
control the granularity with a uniform distribution of the cells.

Given a spatial partition, we can extract a network model to
represent human movements on the grid. Each travel is mapped
to a pair of cells: cg, the starting cell, and c. the destination
cell. The network is determined by a set of nodes, representing
the cells, and a set of edges, representing the travels between
two cells. Each edge is weighted with the number of travels
connecting the corresponding cells.

By varying the grid resolution as shown in Figure [/} we
are able to generate different network perspective of human
mobility, and for each network we can derive basic statistics on
its topology. Network basic statistics are an important proxy to
understand part of the topology of the network itself. Given the
values of measures like average degree or path length, we can
understand if the network representation presents a topology
that is likely to include a modular structure, thus community
discovery can be used effectively.

To refer to distinct granularities, we call each network as
“od_net_" followed by the cell size in meters of the underlying
grid used to generate the network. Figures [§] and [9] depicts
two different sets of statistics. Please note that the figures
do not report the absolute value of the particular network
measurement, but their relative value w.r.t the value obtained
for the network with the largest grid cell, i.e. “od_net_40000".
We cannot report the actual values for all networks for lack
of space]

Looking at Figures [§] and [0] we can state some inter-
esting things about the networks generated with different
grid resolution levels. First, the number of nodes and edges
drops dramatically by passing from a grid size of 200m to
10,000m, while sizes greater than 15,000m do not create much
difference. Second, the number of edges drops with a different
rate w.r.t the drop in the number of nodes: we can see in Figure
B] that the green line starts from below the red line, then it
is higher in the interval 4,000m-17,000m then drops again.
This is consistent to what we see in Figure [0} the average
degree increases until a maximum density for a cell size in
between 10-15,000m, then slightly lowers. The average path
length drops consistently, while reciprocity and average node
weight increase: this is expected as bigger cells includes more
trips and it is more probable to have reciprocal edges.

If we want significant results with community discovery
we need generally dense networks with small-world properties
with not too many small isolated components, and we want
to achieve this objective with the smallest possible grid cell,
thus with more nodes and edges, to have a more fine-grained
description of reality. A preliminary conclusion may be that
the optimal cell size should be around 5,000m: smaller cells
generate networks with lower density, or with too many
components.

Another important characteristic of the analyzed networks
can be observed by when plotting their degree distributions
(see Figure [I0). For clarity, we plotted only the degree
distributions of the networks generated with a cell size of
500m, 1,000m, 2,000m, 5,000m, 10,000m, 20,000m and
40,000m. We can see that all the distributions present a heavy
exponential cutoff. However, while the distributions for small
cell sizes are similar, just on different scales, from cell sizes
larger than 10,000m the exponential cutoff is increasingly
stronger. This means that networks generated with larger
cells lack of a peculiar characteristic of many large complex
networks, i.e. the presence of hubs, a set of nodes very highly
connected. As their average shortest path is still low, it means

2The complete table can be retrieved at the following URL: http://www.di.
unipi.it/~coscia/borders/gridstatistics.htm
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Network V] [E] Avg Degree | [CC] | GC Size % | Reciprocity l

Weeks 11861.2 | 26349.8 4.443 240.75 94.7033 0.0290827 7.85268
Weekdays 11059 22748.2 4.11398 269.5 93.8127 0.0270297 8.40738
Weekends | 7375.25 8745.5 2.37158 667.75 76.4822 0.0172919 14.4058

TABLE II: The average statistics of the different network views of the dataset, using only systematic trajectories.
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Fig. 7: (Left) A sample of the trajectory dataset used for the experiments. (Center) A partition based on a regular grid with
cells of size 2000m. (Right) A partition with a grid with 20,000m cell size.
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Fig. 8: Some statistics of the extracted networks, relative to
the values of the “od_net_40000” network: number of nodes,
edges and connected components, and giant component size.
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with different cell sizes.

that their “small world” properties are not due to the network
connectivity itself, but instead to the network small size. Thus,
a cell size of 10,000m seems a reasonable upper bound for the
cell size in our dataset. This upper bound can be explained by
considering the distribution of lengths showed in Figure [TT}
short-ranged travels (up to 10km) count for the 60% of the
whole dataset. When increasing the grid size, small travels
tend to be contained within the same cell, generating a self-
link in the resulting network. This reduces the “power” of a
cell of attracting other cells in its community, since there are
less long-ranged trips.

A. Experiments

The communities extracted for each grid resolution are
mapped back to the geography and they are used to compute
thematic maps of the territory. Given a spatial resolution,
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dataset.

for each community we retrieve all the cells associated to
its nodes and we join them in a cluster, i.e. a geometric
representation of the area covered by the community. An
example of such thematic map is presented in Figure [12]
For clarity, areas corresponding to different communities are
rendered with different colors. It can be noted the presence of
holes in the reconstructed map, since there cells of the spatial
partition that do not contains any travel. This phenomenon is
more evident for smaller resolutions, where it is possible to
find cells that do not contains any road and, thus, any car
travel.

1) The Borders: We compare the resulting clusters with
the existing administrative borders, in particular with the
provinces, i.e. an aggregation of adjacent municipalities whose
governance has the duty for traffic monitoring and planning.
The borders of provinces are drawn with a thick green line
in Figure [I2]Left). From the figure it is evident how the
emerging communities suggest small variation on the location
of the actual borders. For example, the four provinces of Pisa,
Livorno, Lucca and Massa are aggregated in a single cluster,
since the province of Lucca serves as collector of the mobility
of the other three. Exploring the hierarchical aggregation of the
communities resulting from Infomap (see Figure [I2JRight)),
it is evident the role of the central area of the province,
where Lucca is located and where there exists a large vertical
cluster (highlighted in blue) connecting the majority of the
municipalities of the region. In fact, the cities of Pisa, Lucca,
and Livorno form the so-called area vasta (i.e. large area),
which is characterized by a large flow of commuters. The
province of Livorno is divided into two parts, where the north
part is included to the province of Pisa and, by transitivity,
with the other twos. A similar behavior is observed for the
cluster containing the provinces of Firenze, Prato, and Pistoia.
These big cities actually form a large metropolitan area with
a huge number of commuters moving from one city to the
other. This mobility is also sustained by the high capacity of
the highway that connects the south with the north through
the node of Firenze. The citizen of the city, moreover, have
a special reduction for the toll. The provinces of Siena and
Arezzo maintain their own borders. It is worth noting that the

derived communities follow the borders of each municipality
enforcing the internal role of each city as a minimum building
block for human mobility borders.

Figure [[3] shows the evolution of the clusters at different
spatial granularities, namely with size 500m, 1,000m, 2,000m,
5,000m, 10,000m, and 20,000m. The first three snapshots
show a coherent result, where the clusters identified within the
high resolution grid of 500m are preserved in the successive
steps. Starting from a cell size of 5,000m, the smaller clusters
disappear, like for example the cluster between Siena and
Grosseto, highlighted in red. When the spatial resolution
became more and more coarse, we observe also a merging
of distinct clusters in the same communities. In the clusters of
resolution 5,000m, for instance, the cluster of Siena is merged
with the cluster formed by Firenze, Prato, and Pistoia. In the
other two successive steps the same phenomenon is repeated.
At a resolution of 10,000m the cluster of Firenze is merged
with the cluster of Pisa and Lucca. In the coarser version of
the grid the resulting clustering actually contains all the grid
cells in the same cluster.

From a qualitative evaluation of the resulting maps, we can
infer an optimal grid cell size threshold of 5,000m: smaller
granularities allow the identification of reasonable borders
at the cost of a more complex computation and with the
proliferation of very small local clusters.

2) Community Quality: Beside a visual comparison with
the provinces, we analytically compared the partition derived
by the community discovery approach and the partition de-
termined by the actual administrative organization by means
of the two measures of precision and recall introduced in
Section In our setting, for each grid resolution we
compare the sets of cells determined by the Infomap algorithm
and the set of cells determined by the administrative borders.
The administrative borders are represented by the set of grid
cells whose cenrtoid is contained within the border interior
(we use the centroid of the cell to avoid duplicated cells in
different clusters).

The resulting values for precision and recall are plotted in
Figure [T4] The plot supports the observation made by means
of the visual comparison of the clusters. Recall performs
better for smaller grid size, namely up to 2,000m grid size, it
decreases for values between 2,000m and 7,000m, and it has
a drop for larger cell sizes. These results confirm and explain
the clusters presented in Figure [I3]

Precision and Recall are not the only evaluation measures
we can exploit. Infomap calculates also the code length needed
to codify the network given the community partition. Lower
code lengths are better because they are the results of a better
division in communities. Of course, the simple value of the
code length is meaningless in our case, as the networks have
very different scales (the number of nodes goes from 335k to
194 and the number of edges from 4M to 9k). Instead, we can
adjust the code length with the number of nodes, as it is an
information referred to how many bits are needed to represent
all the nodes in the network. We adjust the code length with
the following formula:
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Fig. 12: (Left) The clusters obtained with grid cell size of 2000m. (Right) The clusters determined by the level 2 of the Infomap

hierarchy for the same grid resolution.
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where n is the number of nodes in the network. The log, n
term returns the number of symbols (bits) needed to code each
node of the network taken separately, i.e. using a uniform code,
in which all code words are of equal length. Since C'L is the
code length returned by Infomap, i.e. the number of symbols
needed to code each node of the network given the community
partition (that tries to exploit community information to use
shorter code words), their ratio is telling us how much better
is C'L over the baseline. If C'L,q; > 1, then the community
division is using the same number of symbols (or more) than
the ones needed without the community, otherwise the com-
pression is effective, and the lower value the better partition.
For this reason, C'Lgg; is scale independent.

The resulting plot of the C'Lyq; for all the networks gen-
erated is depicted in Figure [T3] As we can see, the adjusted
code length decreases while approaching a cell size in the
interval 5-10,000m, that is our minimum, and then increases
again. At cell size 8,000m, the adjusted code length is slightly
lower than 0.53, intuitively it means that the obtained code
length is long as 53% of the baseline. This confirms the
topology analysis of the networks performed at the beginning
of this section, that identified the most promising cell sizes at
values smaller than 10,000m. Moreover, the comparison of the
plots in Figure [I5] and Figure [I4] show that the communities
discovered for grid sizes up to 2,000m have comparable results
at the cost of a complexity that decreases when the cell grid
size increases. Beyond the grid size limit of 7-10,000m the
spatial grid is no more able to capture local mobility behavior
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Fig. 14: The measures of precision and recall compared with
the division of the territory into provinces

and the corresponding communities and their complexity start
getting worse.

VI. CONCLUSION

In this paper we explore the influence of the temporal
and spatial dimension for the analysis of complex networks
extracted from mobility data. We considered a large dataset
of GPS trajectories, with a very precise temporal and spatial
resolution. From these trajectories, we derive different network
perspectives: the first set is generated by defining time intervals
(i.e. weekdays and weekends), the second set is generated by
defining a set of multi-resolution spatial grids. We studied
several network statistics over the extracted networks and we
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adjusted codelength values of the extracted

applied a community discovery algorithm to understand how
the temporal and the spatial dimension affect the problem of
detecting the actual borders of human mobility. The extensive
experiments show that the choice of the appropriate temporally
bounded data and spatial resolution of the grid is critical for the

network study of mobility data. Temporally, data from periods
of increased unpredictability can introduce noise and lower
the quality of mobility prediction. Spatially, finer resolutions
create over detailed networks where smaller components are
associate to several small clusters. Large cell sizes, on the con-
trary, generate an excessive aggregation of local movements.
We provided a framework to understand how to detect the
optimal spatiotemporal tradeoff. We detected the optimal spa-
tial resolution, that allows the correct generalization of local
trips, that represent the majority of human mobility, and the
reduction of model complexity of the extracted communities,
which yield a compact code representation. We also detected
that to maximize the usefulness of the mobility clusters, one
has to rely on systematic trajectories, that are more frequent
and predictable.
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