
B
b

M
a

b

c

a

A

K
T
F
C

1

d
p
H
p
w

u
r
t
a
p
m
m

t
n

5

h
0

Social Networks 54 (2018) 228–237

Contents lists available at ScienceDirect

Social  Networks

journa l homepage: www.e lsev ier .com/ locate /socnet

irds  of  a  feather  scam  together:  Trustworthiness  homophily  in  a
usiness  network

auro  Barone a, Michele  Coscia b,c,∗

Agenzia delle Entrate – Ufficio Studi Economico-Statistici, Via C. Colombo 426 c/d, 00145 Roma, Italy
Naxys – University of Namur, Rempart de la Vierge 8, 5000 Namur, Belgium
Center for International Development - Harvard University, 79 Jfk St, Cambridge 02138, United States

 r  t  i  c  l e  i  n  f  o

rticle history:

eywords:
ax evasion
raud detection
omplex networks

a  b  s  t  r  a  c  t

Estimating  the trustworthiness  of  a set  of  actors  when  all the  available  information  is  provided  by the
actors  themselves  is  a hard  problem.  When  two  actors  have  conflicting  reports  about  each  other,  how
do we  establish  which  of the  two (if any)  deserves  our  trust?  In this  paper, we  model  this  scenario  as  a
network  problem:  actors  are  nodes  in a  network  and their  reports  about  each  other  are  the edges  of the
network.  To  estimate  their  trustworthiness  levels,  we develop  an  iterative  framework  which  looks  at  all
the reports  about  each  connected  actor  pair  to define  its trustworthiness  balance.  We  apply  this  frame-
work to a customer/supplier  business  network.  We  show  that our trustworthiness  score  is  a significant

predictor  of the  likelihood  a business  will pay  a fine  if  audited.  We  show  that the  market  network  is charac-
terized  by  homophily:  businesses  tend  to connect  to  partners  with  similar  trustworthiness  degrees.  This
suggests  that  the topology  of the network  influences  the  behavior  of the actors  composing  it,  indicating
that  market  regulatory  efforts  should  take  into  account  network  theory  to  prevent  further  degeneration
and  failures.

© 2018  Published  by  Elsevier  B.V.
. Introduction

Suppose a judge has the task of conciliating two  parties making
ifferent claims. If all the information available comes from the two
arties, it is impossible to determine objectively where truth lies.
owever, if information about all cases regarding the two parties is
ublic, it is possible to know which of the two is usually associated
ith larger mismatches – and likely to be less trustworthy.

In this paper, we show a simple formalization of this process
sing social networks. Each actor in the network is a source of
eports about the other actors. Such reports constitute the edges of
he network. The edges can contain mismatches: sometimes actor

 reports something about its relationship with actor b that is not
erfectly reciprocated. We  develop an iterative framework to esti-
ate the trustworthiness level of actors in a network when such
ismatches are present.
We  choose to focus on a real application scenario: the detec-
ion of tax fraud in a business-to-business (B2B) customer–supplier
etwork. Each transaction running from a supplier to a customer

∗ Corresponding author at: Naxys – University of Namur, Rempart de la Vierge 8,
000 Namur, Belgium.

E-mail address: michele coscia@hks.harvard.edu (M.  Coscia).

ttps://doi.org/10.1016/j.socnet.2018.01.009
378-8733/© 2018 Published by Elsevier B.V.
carries a packet of information that can be used to estimate the
degree of trustworthiness the business partners have. When mis-
matches arise because the partners disagree on the amount of their
transaction, we  have to solve the same ontological problem of our
hypothetical judge: discerning the virtuous businesses from the
fraudulent ones. We  solve such problem by recursively updating
the trustworthiness of a business with the trustworthiness of the
partners with which it disagrees. The solution fits into the social
network research branch dedicated to the estimation of node cen-
trality in complex networks (Katz, 1953; Bonacich, 1987; Borgatti
and Everett, 2006; Page et al., 1999), or to the detection of malicious
bots in social media (Ferrara et al., 2016). In fact, our social network
perspective allows for more than just identifying fraudulent nodes
in the market system. We  can investigate fundamental properties of
the shadow market network. One such property is homophily: the
actors in our network preferentially attach to actors with a com-
parable level of trustworthiness. In social systems, homophily is
the tendency of actors to connect with other actors that are sim-
ilar to them. Researchers have shown that this is a pervasive and
ubiquitous aspect of social (McPherson et al., 2001; Mollica et al.,

2003) and economic systems (Jackson, 2008), even virtual ones
(Szell et al., 2010).

Note that our modeling is devoid of normative aspects: we
do not advocate for a particular solution to the problem of fix-

https://doi.org/10.1016/j.socnet.2018.01.009
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socnet.2018.01.009&domain=pdf
mailto:michele_coscia@hks.harvard.edu
https://doi.org/10.1016/j.socnet.2018.01.009
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Fig. 1. The schema of our data structure for a full relationship. Businesses a and b
are both suppliers and customers of each other. The direction of the edge goes from
the  supplier to the customer. The blue edges are reports from a, and the orange
edges are reports from b. The amount reported is represented by the edge’s label
and thickness. So the orange edge from a to b is b’s report about how much it bought
from a, while the blue edge from a to b is a’s report about how much it sold to b.

Table 1
The basic statistics of our dataset. We report the number of subjects (both in the
seed set and in the total network); the number of expressed subject pairs (i.e. pairs
of  businesses that were suppliers, customers or both); the number of reports sub-
mitted, ideally two  per pair (one from the customer and one from the provider); the
total transaction volume in billions of Euro in the dataset, assuming the average of
two conflicting reports is correct.

Variable Value

Seed set size 1559
# Subjects 44,889
# Pairs 847,513
M. Barone, M. Coscia / Soci

ng tax fraud. However, the approach presented here can be seen
s a building block of a theory that accounts for the process by
hich this phenomenon arises. During the last 50 years, mod-

ls following classical and non-classical economic theory tried
o understand how and why the shadow network of tax fraud
rises (Allingham and Sandmo, 1972; Feige, 2007; Alm, 2012).
pproaches to study the phenomenon range from game-simulation
trategies (Friedland et al., 1978), to econometrics models based
n behavioral hypotheses (Myles and Naylor, 1996), to fully-
edged behavioral economics models (Hashimzade et al., 2013;
ranovetter, 2005). Our results show that, by extending these
fforts with network theory – from the understanding of scale free
ffects (Barabási et al., 2000) to the detection of meso structures
nd functional modules (Rombach et al., 2014; Coscia et al., 2011)

 we could paint a fuller picture of the informal sector and how to
x the resulting market inefficiency.

Our results are based on a network of 44,889 Italian businesses
ho reported their customers and suppliers in 2007. We  exam-

ne several aspects of the spread of suspicious mismatches in these
ecords. With an iterative mismatch correction algorithm, we  quan-
ify the degree of trustworthiness of each business, correcting
iases in the baseline evaluation that are due to nodes in position of
ower in the network. We  validate our measure of trustworthiness
y showing that it is able to predict if a business is going to pay

 fine for tax evasion if audited, and the amount of the fine itself.
inally, we show that there is an association between one business’
rustworthiness score and the scores of its partners: an evidence
hat the market network is characterized by homophily.

. Materials and methods

.1. Data

Under Italian law, firms are required to record all business to
usiness operations, regardless of the amount. This data is recorded

n the customer and supplier lists, where each operation is con-
ected to the partner business. The data is collected each year and
sed to check mismatches and deploy audits.

The Agenzia delle Entrate provided us the customer and sup-
lier lists of a selected sample of businesses, focusing on the year
007. We  start from a seed list of 1559 audited subjects from a
ingle Italian region (Tuscany). We  then select all customers and
uppliers of these 1559 businesses, ending up with a total node
et of 44,887 subjects. We  collect all business relations established
mong these nodes. The 43,328 businesses not part of the seed set
ave relations with subjects not included in the network, but for
implicity we consider our sample a closed system, since it contains
ll relations among the studied subjects. The assumption is that
he external relations are on average no different than the sampled
elationships.

To generate this initial dataset we had to solve issues about
he same VAT numbers referring to different businesses identifiers,

ultiple reports provided by a business, and duplicated records.
e detail our solutions in the Supplementary Material Section 1.

ig. 1 depicts a view of a full relationship between two hypotheti-
al businesses (a and b). The set of all such relations composes the
artnership network P. Note that, in this example, the two  busi-
esses agree about the amount b sold to a (75). However, they
isagree on the amount a sold to b: b is under-reporting (95) and a is
ver-reporting (100). This disagreement is the basis of our analysis.

Table 1 reports basic statistics of the final dataset. Each pair is a

usiness interaction between two businesses, where one business
old something – product or service – to another. The first business
s the provider, the second is the customer. For each interaction, we
ave two reports: one from the point of view of the customer and
# Reports 1,578,121
Volume (Avg) D 9.094B

one from the point of view of the provider. Note that the number of
reports is lower than the double of the number of pairs: this means
that there are some instances – ∼7% of transactions – in which one
of the two  businesses failed to acknowledge the other party as a
partner in a transaction. The transaction volume included in the
dataset represents approximately 0.56% of Italy’s GDP.

2.2. Trustworthiness

The principal task in this work is to establish the degree of trust-
worthiness of a business. There is a trivial solution to this problem:
to calculate its average level of disagreement with all the businesses
with which it interacts. We  define the mismatch function for a pair
of partnering businesses a and b as:

M(a, b) = |˛a(a → b) − ˛b(a → b)| + |˛a(b → a) − ˛b(b → a)|.

˛a(a → b) denotes the value of the record reported by a of the
amount sold by a to b. We  define the operation volume of the pair
as:

�(a, b) = ˛a(a → b) + ˛b(a → b) + ˛a(b → a) + ˛b(b → a).

Now we  can evaluate the ground trustworthiness function:

T0(a, b) = 1 − M(a, b)
�(a, b)

.

T0(a, b) takes values between 0 and 1, where 1 means perfect
agreement between a and b, and 0 means complete disagreement
– either a or b did not acknowledge their partner. In the example
from Fig. 1, M(a, b) = 5, �(a, b) = 345, T0(a, b) ∼ 0.9855.

We can evaluate the overall trustworthiness of business a by cal-
culating T0 with respect to all its partners. We  refer to this function
as T0(a, ·), contracted as T0(a):

T0(a) = 1
|N (a)|

∑
T0(a, b),
P
b ∈ NP (a)

where NP(a) is the set of all business partners (neighbors) of a in
the partnership network P.
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Fig. 2. Some topological properties of the P′ network. (a) The cumulative degree distribution of P′ , where the x-axis reports the degree k – number of business partners,
regardless if customers or suppliers – and the y-axis the probability for a node of having degree k or higher. (b) The distribution of trustworthiness T0 for all edges in P′ . The
x-axis  reports the value of T0 and the y-axis the probability for an edge to have trustworthiness equal to or lower than T0. (c) The relationship between a node’s degree (x-axis)
and  its average neighbor degree (y-axis) in P′ . Note that for all nodes with k < 100, which compose ∼92% of the network, k < Avg(kN) – confirming the friendship paradox for
P ge rep
W misma
t ons ca

o
u
t
T
b
a
c

2

b
a
t
n
d
t
h
t
i
i

l
t
h
T
t
b
b
h
e

′ . (d) An example of the hub avalanche effect. Each node is a business and each ed
e  assume all edges have the same volume. Supposing that we know the cause of 

han  its non-hubs victims, that are otherwise reliable. However, their few connecti

For convenience, we define a projected view of P. For each pair
f connected businesses, we collapse their multiple connections –
p to 4 directed edges – into a single undirected edge. We  assign to
his edge, say (a, b), the trustworthiness score of the relationship:
0(a, b). We refer to this network as P′. For instance, while in P the
usinesses a and b from Fig. 1 have four edges of weight 75, 95, 100,
nd 75, in P′ they have only one edge of weight 0.9855. In P′, T0(a)
an be interpreted as the average weight of a’s connections.

.3. Topology of the partnership network

Many real world networks are scale free, or have a generally
road degree distribution. This means that most of the nodes have

 low number of connections, while there are large hubs connected
o many nodes. This is true also for the partnership network P′ con-
ecting businesses with customer/supplier relationship. Fig. 2(a)
epicts the degree distribution. P′ is not scale free, but still more
han 50% of its nodes have degree of 20 or less. The central hubs can
ave thousands of connections. Fig. 2(b) depicts how the baseline
rustworthiness T0 distributes: most businesses are honest, mean-
ng that around 70% of businesses have a T0 score higher than 0.8,
.e. they have a total match of 80%.

The two facts mean that, if we pick a node at random, we  are
ikely going to pick a honest business with few business connec-
ions. According to the friendship paradox (Feld, 1991) – which
olds in P′, see Fig. 2(c) –, one of these businesses is likely to be a hub.
herefore, it takes a single fraudulent hub, however unlikely this is
o happen, to propagate low T0 scores unfairly to the small neigh-

ors, while the hub itself might still have a high T0 score, protected
y the honest large quantity of small partners. In other words, a
ub can shift the blame to its non-hub partners. Fig. 2(d) depicts an
xample of this avalanche hub effect.
orts the agreement between the two reports. The node label is the node’s T0 score.
tches in the hub’s connections is exclusively itself, the hub’s T0 score is still higher

nnot counter balance the ones they have with the fraudulent hub.

This topological property also relates to an ontological issue of
the simple T0 measure. When we have a mismatch in the reports
from a and b, without any source of external information we cannot
know which business is to blame. T0 distributes equally the blame
to a and b even if, hypothetically, the source of the entire mismatch
could be a.

2.4. Recursive trustworthiness

We  address both issues by calculating the Tn score. Tn is an iter-
ative correction of T0. In practice, to evaluate the trustworthiness
of a at step n, we make use of its trustworthiness – and the ones
of all its partners – at step n − 1. Tn uses T0 as initial condition. It
also has to respect the same constraint of T0, namely to take values
exclusively between 0 and 1.

To calculate Tn(a, b), it is useful to first estimate the trustwor-
thiness balance Bn(a, b):

Bn(a, b) = Tn−1(a)
Tn−1(b)

.

Bn(a, b) is higher than 1 if, at the previous iteration, a was  judged
to be more trustworthy than b. We now plug the balance into the
trust update:

Tn(a, b) =

⎧⎨
⎩

Bn(a, b)
Bn(a, b) + (1 − Tn−1(a))

if Tn−1(b) /= 0

1 if Tn−1(b) = 0.

The two  cases are required to deal with fully untrustworthy
partners (Tn−1(b) = 0), as in that case Bn(a, b) is undefined. Since

b in this case was  unreliable, we have no other choice than to trust
a, hence Tn(a, b) = 1 and Tn(b, a) = 0.

Note that T0 was  symmetric (T0(a, b) = T0(b, a)), while Tn(a,
b) breaks this symmetry. This is because Bn(a, b) /= Bn(b, a), if
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Fig. 3. The progression of Tn values of each node in the hub example for growing itera
condition), T1 (first iteration), T5, and T100, which we  chose as last iteration.
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ig. 4. Relationship between degree (x-axis) and Tn (y-axis). Each data point has
een colored according to how many nodes (in logs) have the given degree and Tn

alues.

n−1(a) /= Tn−1(b) (just like T0(a), also Tn(a) is the average of all
n(a, b)). This is by design, as the asymmetry will transfer more
rustworthiness to the more trustworthy side. Tn(a, b) is proven to
ake values between 0 and 1, as any function of the form x

x+x0
does,

o long as x0 ≥ 0. In our case, this is true, as our x0 is 1 − Tn−1(a).
ince T0(a) takes values in between 0 and 1 by construction, �n
uch that Tn(a) breaks the assumption.

Note that the overall trustworthiness in the system increases
t each iteration. This is because, since Tn−1(b) ≤ 1, then Bn(a,
) ≥ Tn−1(a). This is a desirable property. In practice, it means that
f a business partner is not fully trustworthy then, however high
he mismatch, the other party has to be acknowledged being partly
n the right. However, if Tn−1(b) = 1, then a does not get any extra
rustworthiness from the relation, and Tn(a, b) = Tn−1(a, b).

Fig. 3 shows how Tn addresses the topological issue. In the first
tep of the iteration all scores increase, as expected since Tn ≥ Tn−1.
owever, the speed at which the increase happens is slower for

he central hub, given its not trustworthy nature. With n = 5, we
ave already a situation in which the central hub becomes the

east trustworthy node in the network. When n = 100, there is vir-
ually no more trust that can be exchanged in the system. The top
odes cannot have Tn = 1, but they are very close to it (>0.999). As a
onsequence, at each iteration the hub can increase its Tn by a neg-
igible amount, and the system can be considered at convergence.
he hub’s privilege has been revoked.

Tn addresses the ontological issue by saying that, when evalu-
ting the reports of a and b about each other, one should trust the
usiness that has been judged the most trustworthy of the two so
ar. With its iterative updates, Tn tackles the recursive nature of this
uestion.

.5. Tn properties
Tn has a low correlation with the node’s degree. Fig. 4 (left)
hows that there is little to no relation between Tn and degree,
s desired. In fact, the correlation between these two vectors is
tion indexes n. Tn values are used as node labels. From left to right: T0 (starting

low (0.06). More importantly, the correlation is less than half the
one between the degree and T0, which is equal to 0.11. The small
dependence of Tn with the degree is the reason why Tn is a better
measure than PageRank, as the Spearman correlation of PageRank
with degree is very high.

It is also important to assess how much Tn changes the estimates
we had with T0. If we update the values, but they maintain a strong
correlation with T0, then the operation is pointless. There is a sig-
nificant linear correlation, equal to 0.63. This means that the two
measures are related. However, this is expected and desired. On the
other hand, Tn operates a significant reordering in the trustworthi-
ness ranks, which is where its value resides. Top-trustworthy nodes
can be demoted significantly and vice versa. This can be captured
by estimating the Spearman rank correlation, which is significantly
smaller than the linear correlation. It is equal to 0.34.

2.6. Tn convergence

Since we have not given proof of convergence for Tn, we need
to show the asymptotic behavior of the function as n → ∞.  There
are two measures of interest. First, the average difference between
Tn and Tn−1. A well-behaved function would show an exponential
decay as it approaches its final value. Second, the overall average
Tn. Since we  have shown Tn to be a monotone growing function, its
final value might be Tn = 1 for all businesses. At this point, Tn would
be useless.

We ran 100 iterations of T to estimate T100. Fig. 5 depicts the
result for both measures of interest. Both requirements are sat-
isfied: the average difference across iteration does indeed decay
exponentially, and the asymptote of Tn seems to lie below 0.98.
Since there is little difference between iterations 99 and 100, we
decide to fix n = 100 for the rest of the paper. Note that each itera-
tion over more than 2 million records took an ordinary laptop a little
more than 2 seconds with a fairly naïve Python implementation,
demonstrating the time efficiency of the calculation. Each edge of
P′ is considered twice. That makes its time complexity O(ne), where
e is the number of edges in P′ and n is the number of iterations. If
e 
 n, as it is the case if the network is large and convergence hap-
pens after few iterations, then the complexity is O(e). Being linear in
term of the number of edges, the computation of Tn can be applied
to very large networks with hundreds of millions of connections.

Fig. 6 depicts the evolution in the distribution of Tn as n grows.
More nodes obtain higher Tn scores as they tend to be classified
as trustworthy. However, the speed at which the function tends to
its asymptotes slows down until it converges to its final form. All
nodes for which Tn < 0.99 can be considered not trustworthy.

3. Results
3.1. Avalanche effect in the data

In the previous section we provided a topological argument for
the hub avalanche effect. Is this effect actually affecting a signifi-
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Fig. 5. Convergence of Tn: the asymptotic behavior for two measures of interest across iterations of Tn . (a) For each iteration n (x-axis) we report the average inter-iteration
difference (|Tn − Tn−1|) on the y-axis. (b) For each iteration n (x-axis) we  report the average Tn value of the businesses in the dataset (y-axis).
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Table 2
The results of the model showing T0 homophily in P′ .

Dependent variable:

�
(1) (2) (3)

�T0 −1.481*** −1.106***

(0.008) (0.009)
��  0.396*** 0.388***

(0.001) (0.001)
Region 0.964*** 0.938***

(0.004) (0.004)
Industry 1.618*** 1.571***

(0.015) (0.016)
Constant 0.248*** −5.603*** −5.306***

(0.002) (0.013) (0.013)

Observations 1,694,297 1,694,297 1,694,297
Log Likelihood −1,157,201.000 −1,032,081.000 −1,024,088.000
Akaike Inf. Crit. 2,314,407.000 2,064,169.000 2,048,185.000

Note:
*p < 0.1.
ig. 6. Distributions of Tn at various n. Just like in Fig. 2(b), we report the probability
y-axis) of a business to have a Tn value (x-axis), for different ns.

ant portion of nodes in our data? To answer this question let us
onsider a hub as being a node with more than k connections. We
hen consider the neighbors of each hub. We define a victim of the
valanche effect as a business with lower T0 than the hub, and either
ore than 90% of its other connections have a score higher than the

ub’s T0, or the victim has no other connection.
We check multiple values of k (from 100 to 600). For each thresh-

ld, the share of victims among hub’s neighbors varies between 12%
nd 16%. This means that there are thousands of small businesses
n the network affected by the avalanche effect of untrustworthy
ubs.

.2. Homophily

Homophily is defined as the tendency of individuals to associate
nd bond with similar others (McPherson et al., 2001). Narrowing
o a network perspective, homophily – also known as assortativity

 implies that nodes will likely connect if they share similar char-
cteristics. In our scenario, homophily implies that businesses with
imilar Tn scores are more likely to connect. If a business is honest
t will tend to have honest customers/suppliers, and the converse
pplies if the business is not honest. We  start by showing that T0
mplies homophily. Then we show that Tn – designed to abstract P′

rom assortative mixing – still shows all signs of homophily. This
uggests that assortativity is an intrinsic characteristic of P′.

It is easy to see that T0 implies homophily by construction. Since
ny mismatch between a and b will bring down both T0(a) and T0(b)
y equal amounts, the T0 estimation of two nodes at the endpoints
f an edge is highly correlated. We  provide three arguments in favor
f this statement.
First, we focus on the difference of T0 scores between businesses
�T0). We  compare the average �T0 for connected pairs with the
verage �T0 of unconnected pairs. Since there are too many uncon-
ected pairs, we  select a random sample of them of equal size of
**p < 0.05.
*** p < 0.01.

the number of connected pairs (∼1.1 millions). We  repeat the anal-
ysis 20 times and we report the average result. The way  we  select
random unconnected pairs is the following: for each node in the
network we pick a random set of non-neighbors of roughly equal
size of the node’s degree. The average �T0 for neighbors is 0.1634.
The average �T0 for non-neighbors is 0.1976 (with standard devia-
tion 2.35 × 10−4). Since the two averages are significantly different,
we use this as first proof of T0 homophily in the network.

As second argument, we show in Fig. 7(a) the relationship
between �T0 for neighbors and non-neighbors. The depicted �T0
for non-neighbors is the average one we got over our 20 iterations.
Only 12,552 businesses are below the identity line, while 32,337
lie above. This implies that for more nodes the difference in T0
with neighbors is lower than with non-neighbors, an evidence for
homophily.

In the final argument, we create a logit model with the aim of
predicting the presence/absence of an edge in the partnership net-
work P′ by using �T0. Table 2 reports the result of this model. The
target variable is �:

�(a, b) =
{

0 if (a, b) /∈ P ′

1 if (a, b) ∈ P ′.

Again, we create a table where we  introduce a set of random
non-edges, of approximately equal size of the set of edges. When

we test the relationship between � and �T0, we obtain a negative
and significant relationship: the higher �T0 the less likely the two
businesses connect (model 1 in Table 2).
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Fig. 7. The homophily plots for T0 and Tn . (a) Homophily plot for T0. Each data point is a business, On the x-axis we report its average T0 difference with all its neighbors in P′ .
O m extractions. The black line is the identity function f(x) = x. Homophily would imply that
m hbors (y-axis) is higher than the �T0 with neighbors (x-axis). (b) Same plot, but using Tn

i

w
a
l
a
l
m
v
n
t
t

t
(
n
c
t

b
fi
h
a
a
e
n
s
t
w
(

m
a
n
o
e
a

n
l
1
b

i
f
d
q
i
c

Table 3
The results of the model showing Tn homophily in P′ .

Dependent variable:

�
(1) (2) (3)

�Tn −1.039*** −0.574***

(0.011) (0.012)
��  0.396*** 0.393***

(0.001) (0.001)
Region 0.964*** 0.953***

(0.004) (0.004)
Industry 1.618*** 1.611***

(0.015) (0.015)
Constant 0.045*** −5.603*** −5.541***

(0.002) (0.013) (0.013)

Observations 1,694,297 1,694,297 1,694,297
Log  Likelihood −1,169,663.000 −1,032,081.000 −1,030,942.000
Akaike Inf. Crit. 2,339,331.000 2,064,169.000 2,061,894.000

Note:
*p < 0.1.
n  the y-axis, its average T0 difference with non-neighbors, averaged over 20 rando
ore  points lie above the identity line than below, because their �T0 with non-neig

nstead of T0.

We  have to control for other sources of homophily in the net-
ork: businesses do not connect with each other randomly. They

re more likely to be each others customer/supplier if they are
ocated in the same region, if they operate in the same industry,
nd all businesses – no matter how small – have to connect to very
arge providers of fundamental services (electric energy, telecom-

unication, etc.) implying a positive correlation with difference in
olume – or ��. In fact, all these relationships are present and sig-
ificant – as Table 2 model 2 shows. Table 2 model 3 shows that
he T0 homophily argument survives even when controlling for all
hese factors.

To gauge the substantive significance of this result, consider
hat the baseline probability of two nodes to be connected is 50%
since we focus on a balanced dataset containing as many random
on-edges as edges). If �T0 is in the bottom quartile (<0.04) the
onnection probability is 64%, while with �T0 > 0.2 (top quartile)
his probability drops to 37%, suggesting a strong effect.

We say that T0’s assortativity is a weak indicator of homophily
ecause it is derived directly by the way T0 is computed. If we  still
nd assortativity with Tn, then we can call it a strong evidence of
omophily, because Tn actively fights assortativity. Take Fig. 3 as
n example. In the starting condition on the left, there is an equal
mount of edges between alike T0 nodes than nodes with differ-
nt scores. At the 100th iteration, almost all edges are between
odes with different T100 score. The degree of homophily in the
implified example is reduced, at the point of it being disassor-
ative, rather than assortative. We  then expect that, in a network
ithout structural homophily, Tn will show signs of disassortativity

this is supported by simulation results reported in Section 3.6).
However, when substituting �T0 with �Tn, all the three argu-

ents we made previously for T0’s homophily still hold. The
verage �Tn for neighbors is 0.0491. The average �Tn for non-
eighbors equals to 0.0552 (with standard deviation 2.21 ×10−4,
ver the usual 20 iterations). Again, we see a significant differ-
nce, even if the scores are closer than before, because Tn values
re skewed towards 1.

Fig. 7(b) shows the scatter of the average neighbor and non-
eighbor �Tn scores. Again, we have more points above the identity

ine than below. The difference here is actually higher than before:
1,070–33,819 versus T0’s 12,552–32,337. The businesses tend to
e closer to the identity line, but more of them end up above it.

Table 3 reports for �Tn the three models we calculated for �T0
n Table 2. Again, model 3 shows a significant negative coefficient
or �Tn, even controlling for the other sources of assortativity-
isassortativity in P′. The effect magnitude is reduced (bottom �T
n

uintile connection probability is 52%, top quintile is 40%), which
s understandable given the different nature of Tn and T0 when it
omes to homophily, but it is still non-trivial. From these three
**p < 0.05.
*** p < 0.01.

arguments we can conclude that, no matter if we  use T0 or Tn,
trustworthiness homophily is an intrinsic characteristic of P′.

3.3. Prediction quality

We now turn our attention to the practical application of Tn. We
focus on the task of estimating the likelihood that a given business is
maliciously misreporting their activities, evading their fiscal duties.
An instrument to improve such task is beneficial for all actors in
society. The Agenzia delle Entrate can perform audits with higher
confidence of success, the government will be more efficient in
upholding its fiscal laws, and the non-malicious businesses are less
likely to lose time and resources to deal with an audit that should
not have happened.

We  divide the task in two parts. The first part focuses on predict-
ing the probability that a business will have to pay a fine if checked.
The second part aims to estimate how much the business will have
to pay in fines, once it has been established as malicious. We  per-
form the first part in this section and the second part in Section
3.4.

For both prediction tasks, we have to narrow down onto the ini-
tial seed set from Tuscany, composed by 1559 businesses, about

which the data providers shared the audit results. All 1559 busi-
nesses were audited in 2007 and 1233 of them had to pay a fine.
The distribution of fines is skewed, and Fig. 8(a) depicts it.
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Fig. 8. The distributions of amount of fines (�) and business volume (�). (a) The probability distribution of having a given fine � per business, among the 1559 seed set. Note
that  most businesses did not get a fine, so � = 0. To show the skewed distribution of �, we
means  that the Agenzia delle Entrate gave a negligible amount of fines lower than D 200. 

orders  of magnitude.

Table 4
The predictive power of Tn in estimating the probability that a business will be fined,
if  checked (logit model).

Dependent variable:

�̄
(1) (2) (3)

� 0.116*** 0.190*** 0.171***

(0.037) (0.040) (0.041)
T0 0.0004 0.007*

(0.003) (0.004)
Tn −0.039*** −0.047***

(0.012) (0.014)
Constant 0.091 3.125*** 3.585***

(0.366) (1.163) (1.261)

Observations 1559 1559 1559
Log  Likelihood −793.387 −785.139 −783.381
Akaike Inf. Crit. 1592.773 1576.279 1574.763

Note:

*
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* p < 0.1.
* p < 0.05.
*** p < 0.01.

For the first task, we set up a logit regression. As dependent
ariable, we generate a binary variable from the amount of the fine.
hat is, suppose �(a) is the amount a business had to pay in fine,
he dependent variable �̄(a) is defined as:

¯ (a) =
{

0 if �(a) = 0
1  if �(a) > 0.

We  test the effect of both T0 and Tn in isolation in models (1)
nd (2), and then combine them in our full model (3):

ogit {P(�̄(a) = 1|X = x)} =  ̨ + ˇ1 log(�(a)) + ˇ2T0(a) + ˇ3Tn(a) + �

here  ̨ is the constant intercept and � the error term. Note that
n all models we control for the volume of business a (�(a)). We
xpect the size of a business to play an important role in deter-
ining whether a business will misreport some of its transactions.

arge businesses are more likely to do so even if by pure chance:
he larger the volume of records, the more likely there will be errors
n the data. This means that � is a possibly significant confound-
ng factor for which we need to account. The distribution of total
usiness volume in the network spans several orders of magni-
ude. In fact, �’s value distribution is both left and right skewed.
ig. 8(b) depicts it. To account for this, in our model we  take its
atural logarithm.
Table 4 reports the results of models 1–3. Before interpreting the
oefficients, we  have to note that we are unaware of the current
trategy used by the Agenzia delle Entrate to detect the malicious
usinesses in the network. For this reason, we are unable to correct
 increase � by one and plot it in a log–log space. The large gap between 0 and 200
(b) The probability distribution of having a given � per business, spanning several

possible confounding factors they might introduce in our results.
It is likely that Agenzia delle Entrate is applying a mismatch strat-
egy similar to T0, since a logit model predicting the odds of being
audited has a significant negative coefficient for T0 (note that T0
and Tn represent the trustworthiness of a business: the lower the T0
trustworthiness of a business the more likely the business is going
to be audited). If that is correct, we should not read too much in T0’s
significance level and effect size, because we  are already looking at
businesses selected using the variable itself.

Tn’s coefficient is negative and significant: the lower the Tn

trustworthiness of a business the more likely that business is to
be fined, if audited. The conclusion is that, by estimating Tn, we
are introducing relevant information that can help discern better
between trustworthy and non trustworthy businesses. In Section
3.5 we show through simulations that Tn is a good predictor of
actual trustworthiness when removing the sample bias problem.

When interpreting the  ̌ coefficients note that we  multiplied
both T0 and Tn to 100 for easier interpretability: the coefficients
represent the change in odds for each percentage point increase in
either T0 and Tn. Focusing on model 2, for each percentage point
increase in Tn the odds of being fined go down by e−0.039. The base-
line probability of being fined – controlling for size – if audited
is ∼75.75 % (3.125/(3.125 + 1)), this means that having a Tn 10 per-
centage points lower than the average implies a fining probability of
∼77.85%. Using T0 and Tn together (model 3) increases Tn predicting
power, by controlling for the initial condition of honest businesses
linked to malicious ones (T0). In the same scenario presented before,
the probability of being fined if audited with a Tn 10 percentage
points lower than average would be ∼78.23%.

This is confirmed by empirical analysis. A business in the bottom
Tn quartile has a probability of being fined if audited of ∼82.6%. A
business in the top trustworthiness quartile has a lower fine prob-
ability: only 72.2%.

Fig. 9 reports the log likelihood of the model for different choices
in the iteration parameter n. The quality of the model peaks for
n = 17, which means that this is the value for which Tn is the
most orthogonal with T0 and therefore yields the best prediction.
However, we are interested in the system at convergence, not in
maximizing the prediction quality, and that is why  we fix n = 100.

3.4. Predicting fine amount
After proving that Tn is a good predictor of the probability of
paying a fine if audited, we now restrict our view only on those busi-
nesses that were audited and fined. The objective is to test whether
T0 and/or Tn are also significant predictors of the amount of the



M. Barone, M. Coscia / Social Networks 54 (2018) 228–237 235

Fig. 9. The likelihood of the model predicting informality as a function of n in Tn

(the number of iterations).

Table 5
The predictive power of Tn in predicting the amount a business will be fined, if found
guilty of tax fraud.

Dependent variable:

�
(1) (2) (3)

� 0.213*** 0.228*** 0.250***

(0.026) (0.027) (0.027)
T0 −0.015*** −0.010***

(0.002) (0.003)
Tn −0.032*** −0.023***

(0.005) (0.006)
Constant 7.299*** 9.183*** 8.829***

(0.262) (0.446) (0.453)

Observations 1233 1233 1233
R2 0.059 0.062 0.072
Adjusted R2 0.058 0.060 0.070
Residual Std. Error 1.507 1.505 1.497
F-statistic 38.833*** 40.335*** 31.890***

Note:
*p < 0.1.
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Table 6
Results of the simulation correlating the T scores with the hidden real T value.

Dependent variable:

T
(1) (2) (3)

� −0.008*** −0.023*** −0.013***

(0.001) (0.0005) (0.0005)
T0 0.531*** 0.282***

(0.003) (0.004)
Tn 0.867*** 0.620***

(0.004) (0.005)
Constant 0.285*** −0.150*** −0.117***

(0.004) (0.005) (0.005)

Observations 100,000 100,000 100,000
R2 0.247 0.296 0.336
Adjusted R2 0.247 0.296 0.336
Residual Std. Error 0.251 0.242 0.235
F-statistic 16,363.350*** 20,991.230*** 16,853.850***

Note:

as no surprise, because we  argue that T0 is not a bad predictor,
*p  < 0.05.
*** p < 0.01.

ne. We  test a series of models similar to the ones in the previous
ection, testing T0 and Tn first separately and then jointly:

og(�(a)) =  ̨ + ˇ1 log(�(a)) + ˇ2T0(a) + ˇ3Tn(a) + �a.

Also in this case, we control for the business’ volume �(a). The
ationale is that a large business is likely to pay a larger fine, since
he Agenzia delle Entrate will take into account the business’ size
hen deciding the amount of the fine. This also implies that the
nes have a skewed distribution (Fig. 8(a)), and that is our reason

or log-transforming the dependent variable �.
Table 5 reports the results of these models. In this case, there

s no disagreement between T0 and Tn, as they both carry negative
ign. The more trustworthy a business was, the less it is going to
e fined if audited and found guilty. The effect size is small, as wit-
essed both by the coefficients and by the low R2, although it is
ot a difference to scoff at: a bottom trustworthiness quartile fine
verages at ∼17kD , while a top trustworthiness quartile fine aver-
ges at ∼13.7kD , a difference of more than three thousand Euros
er audit. If we substitute 300 high trustworthiness audits with 300

ow ones, the increased revenue would scratch a million Euros, even
gnoring the fact that low Tn businesses also have a lower baseline
robability to come out clean, as shown in the previous section.
oreover, the contribution of Tn is significant even in model 3. We
onclude that Tn is a useful variable also for the task of predicting
ne amounts, as it complements volume (�) and simple network
ismatch (T0).
*p < 0.1.
**p < 0.05.

*** p < 0.01.

3.5. Simulation: prediction quality

One of the downsides of real data is that we can know whether a
business is fined or not only for those who are audited. The Agenzia
delle Entrate cannot audit all businesses, so it has to sample the ones
that are most likely to pay a fine. Our sample is biased. We  need to
test how well our measure performs without a biased sample, but
we cannot use real data given the constraint just stated.

One way to test Tn is by running a simulation. We  generate a net-
work with similar topological characteristics of P, we assign a secret
real trustworthiness score T to each node at random, we modify
each node record according to its trustworthiness and we apply
our framework. If Tn can recover the information on T looking at all
nodes in the network then it is a good measure.

As for the first step, we create a scale free directed graph. We  fix
the number of nodes at 1000. The graph is directed and weighted:
each edge weight represents the volume of the transaction. The
edge weights are chosen uniformly at random, between 1 and 100.

Then, we  assign a secret trust score to each node of the network.
Also these scores are extracted uniformly at random between 0
and 1, included. These are the real trust scores, or T.  We  iterate
over all edges in the graph and we  generate a report by the two
nodes involved in the relationship, a and b. Both a and b with a
random 50% probability will either over-report or under-report. If
a is under-reporting, we multiply the actual edge weight by T(a). If
a is over-reporting, we  multiply the actual edge weight by 1/T(a).
We perform the same operation for b, so we will have a mismatch,
except in special cases – if T(a) = T(b) AND they both under- or over-
report, or T(a) = T(b) = 1 (both rather extreme cases). The result is
a data structure equivalent to P.

We then generate P′ from P, and calculate T0 and Tn. We  repeat
the process 100 times, to account for random fluctuations. In Table 6
we report the results of the same regression we ran to estimate �̄,
but this time the dependent variable is T,  the real trust score that
has not been used to build Tn. We  also consider all nodes in the
network, without sampling.

We can see that Tn is a good predictor of T,  confirming that it
is indeed recovering the real trustworthiness values. The average T
in the bottom quartile of Tn is just 0.2, while it is 0.61 in the top Tn

quartile. In this case, also T0 is positive and significant. This comes
but the one the Agenzia delle Entrate is using to deploy the audits,
thus biasing the sample in such a way  to lower its coefficient below
significance. Note that, when controlling for T0, the effect of Tn is
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Table 7
Results of the logit regression distinguishing edges and non-edges using the trust-
worthiness scores.

Dependent variable:

�
(1) (2) (3)

�� −0.001 0.016*** −0.004***

(0.001) (0.001) (0.001)
�T 0.0001

(0.006)
�T0 −0.510***

(0.011)
�Tn 0.146***

(0.014)
Constant 0.006 −0.038*** 0.029***

(0.007) (0.007) (0.007)

Observations 1,988,828 1,988,828 1,988,828
Log  Likelihood −1,378,550.000 −1,377,458.000 −1,378,496.000
Akaike Inf. Crit. 2,757,106.000 2,754,923.000 2,756,998.000

Note:
*
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p < 0.1.
*p < 0.05.
*** p < 0.01.

ower, because of the small co-linearity between the two  scores.
his seems to suggest that the Tn we observe in the prediction task
sing the real data might be an underestimation: in an unbiased
ample Tn’s coefficient should be higher.

.6. Simulation: homophily

We  perform a similar validation also for the homophily argu-
ent. We argue that T0 is by design going to find assortativity in

 non-assortative network, while Tn actively fights homophily and
ill, if anything, find disassortativity in a non-assortative network.

We generate 100 Erdos-Renyi random directed graphs, with
 = 1000 and p = 0.01. Again, the real T scores are extracted uni-
ormly at random. We apply the same procedure described above
o derive P, P′, T0 and Tn. Then, we generate a set of non-edges of
qual size of the edge set. We  run a logit regression trying to pre-
ict which one is an actual edge using �T,  �T0 and �Tn. Since the
etwork is completely random and the T scores are random too, the
etwork is by definition non-assortative.

Table 7 reports the results. Consistently with the non-
ssortative nature of the network, �T’s  coefficient is zero. �T0’s
oefficient is negative and significant. This provides evidence in
avor of our argument: we  indeed find homophily in T0’s distribu-
ion even in a network that is non-assortative by definition. This
s derived by how T0 is calculated: whenever there is a mismatch,
onnected nodes will get an equal penalty in their T0 scores.

However, �Tn’s coefficient is positive and significant. The size
f the effect is not of substantive significance, but statistical sig-
ificance alone here is enough to sustain our argument: Tn by
onstruction is trying to remove as much as possible homophily
rom the network. It goes so far in this attempt, that a non-
ssortative network appears to be disassortative, the opposite of
omophily. The fact that we still find homophily in the business net-
ork is therefore even more remarkable. We  leave the investigation

n the origin of this strong homophily as future work.

. Discussion

In this paper we develop a complex system framework to study

he dynamics of tax fraud in a network of business partnerships. We
re inspired by the applications of network analysis on evaluating
he systemic risk of the global economy (Schweitzer et al., 2009),
nd on attempting to explain the causes of economic growth and
works 54 (2018) 228–237

predict it (Hausmann et al., 2011; Hidalgo and Hausmann, 2009).
Network analysis has also been applied at the micro level to explain
the retail behavior of single customers (Pennacchioli et al., 2014).
Here, we apply this micro perspective to the task of evaluating for
each business its likelihood of engaging in fraudulent transactions
and tax evasion.

Tax evasion is a topic that has been studied extensively in the
past (Allingham and Sandmo, 1972; Feige, 2007). A good recent
review can be found in Alm (2012). Approaches to study the phe-
nomenon range from game-simulation strategies (Friedland et al.,
1978), to econometrics models based on behavioral hypotheses
(Myles and Naylor, 1996), to fully-fledged behavioral economics
models (Hashimzade et al., 2013). Most models, and especially the
latter example, agree on the importance of the social element in
the decision of evading taxes. However, none of them had the pos-
sibility of analyzing a dataset as detailed and as large as the one we
present in this paper. None of them also did it using an approach
rooted in network and complexity science, which we prove to be
useful. Our contribution also provides a micro-level predictive sys-
tem instead of modeling the overall distribution of tax evading
behavior.

We provide this contribution by using mismatches in the net-
work edges to estimate the degree of trustworthiness of businesses.
We  show that the trivial solution of averaging the mismatches has
several problems. The main two are: the topology of the network
implies an unbalanced estimation, giving an unfair advantage to
high-degree hubs; and averaging mismatches is unable to detect
the actual malicious actor, distributing the blame equally to all
parties involved. We  correct the mismatch average iteratively, cre-
ating a new trustworthiness score that is able to arbitrage trust in
case of mismatched reports by looking at the network as a whole.
This new score has a significant predictive power on the likelihood
of being fined if audited. It also unveils fundamental properties of
trustworthiness in a business network: businesses tend to connect
with similar businesses. In other words, tax fraud homophily is a
fundamental characteristic of business partnerships.
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