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Abstract

The global trade system can be viewed as a dynamic ecosystem in which exporters 1

struggle for resources: the markets in which they export. We can think that the aim of 2

an exporter is to gain the entirety of a market share (say, car imports from the United 3

States). This is similar to the objective of an organism in its attempt to monopolize a 4

given subset of resources in an ecosystem. In this paper, we adopt a multilayer network 5

approach to describe this struggle. We use longitudinal, multiplex data on trade 6

relations, spanning several decades. We connect two countries with a directed link if the 7

source country’s appearance in a market correlates with the target country’s 8

disappearing, where a market is defined as a country-product combination in a given 9

decade. Each market is a layer in the network. We show that, by analyzing the 10

countries’ network roles in each layer, we are able to classify them as out-competing, 11

transitioning or displaced. This classification is a meaningful one: when testing the 12

future export patterns of these countries, we show that out-competing countries have 13

distinctly stronger growth rates than the other two classes. 14

Introduction 15

Global trade can be considered as a complex system, whose sophisticated behavior 16

emerges from its many interacting parts – countries exporting products in different 17

importing markets. This systemic view has been adopted in the past and it proved to 18

be an effective one. Diversity and product relatedness in the export basket of countries 19

and regions has been used as proxy of their economic solidity [1–4]. Different economic 20

complexity indexes have proven to be incredibly successful in predicting future economic 21

growth, better than traditional indicators such as years of schooling or the quality of 22

public institutions (e.g. in terms of resistance to corruption) [5–8]. The complexity 23

approach illustrated how knowledge flows across neighboring countries [9, 10], and how 24

these dynamics allow us to predict structural change [11,12], suggesting new avenues for 25

development [13]. 26

Here, we enrich the literature on complexity and economic development by further 27

investigating its relationship with ecology. Traditionally, export patterns are considered 28

as static and only locally related to the other countries in the world. The classical first 29

step is to calculate the Revealed Comparative Advantage [14] of a country in a given 30

product across all importers for a given time interval. Instead, we draw relations among 31

countries by inferring potential competition among them across time. We see a pair of 32

importer-product, for instance the car market in the US, as an evolving trade “niche”, 33
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Fig 1. An example of a displacement relation. From left to right we observe a pattern
in the yearly car import data from the US. In the first year, only Italy is present. In the
second year, Japan appears in the market. In the third year, Italy disappears from the
market. This pattern from the trade data is represented in the competition network as a
directed edge from the displacer (Japan) to the displaced (Italy). The edge is labeled
with its layer: the car market in the United States.

with exporters appearing and disappearing like fit and unfit organisms in an ecosystem. 34

In our analysis, the fitness of an economy in a niche correlates with its ability to 35

displace (out-compete) unfit economies. If this happens consistently in many other car 36

importing countries, then the fit economy should be able to grow its car exporting 37

business in the future. 38

We test this theory by creating a competition network, connecting country a to 39

country b if a’s appearance in a market preceded b’s disappearance, as illustrated in Fig 40

1. Since we have different products and different years in which these relationships can 41

be established, we use a multilayer network model [15,16]. Our competition network is 42

a peculiar structure, because traditionally networks are used to express positive 43

relations, while in our case the relation is negative (competition). Negative relationships 44

are relatively less explored than positive ones, and previous works showed they obey to 45

different dynamics [17,18], whether they are studied using social balance or status 46

theory frameworks [19, 20]. For instance, negative edges are much less prone to generate 47

triangles and high clustering [21,22]. They also allow for the emergence of more 48

complex network motifs [23]. 49

World’s markets are highly dynamic, with exporters frequently appearing and 50

disappearing in a niche. This means that basic statistical properties of our competition 51

network are not enough to unveil the potential displacement patterns. In the 52

competition network there is a very strong correlation between out- and in-degree, 53

which record the number of displacements a country caused and to which it was subject, 54

respectively. As a consequence, it is not possible to detect if a country tends to 55

out-compete more than it is out-competed. Moreover, in the competition network we 56

observe a number of unexpected properties, such as reciprocity – countries repeatedly 57

displacing each other – and triangles – cycles of countries where the displacers are 58

displaced by their displaced’s displaced. To tackle these issues, we need to employ 59

non-local analysis techniques, and take into account indirect patterns in the directed 60

graph. This is an approach frequently used in network science, from ranking a node’s 61

structural importance [24], to the measurement of node similarity [25]. 62

In this paper, we choose to borrow the tools of a third non-local node-centric 63

network analysis: role detection. In the role detection literature, different connectivity 64

patterns are used to classify nodes in particular network roles [26]. One specific and 65

very popular case is the one of community detection, which aims at finding densely 66

connected modules [27]. Node roles have been used to describe a wide range of 67

phenomena, from metabolic networks [28] to the connectivity in the brain [29,30]. 68

Specifically, we borrow the approach described in [31]. In this method, we compute a 69

feature vector for each node describing the size of the out/in neighborhoods at a given 70

network distance. Through this vector, we redefine a fit economy from “able to 71

PLOS 2/20



out-compete many countries” to “able to out-compete many countries who are able to 72

out-compete many countries” – up to six degrees of separation. We perform the same 73

operation for in-degree roles (an unfit exporter is an exporter who is “displaced by 74

countries who are prone to be displaced themselves”). 75

We define three roles for exporters: “Out-competing” countries are countries which 76

consistently score high in out-degree roles and low in in-degree roles; “Displaced” 77

countries are countries scoring the opposite (low in out-degree roles and high in 78

in-degree roles); and “Transitioning” countries, whose scores in both roles are 79

comparable. 80

This classification is a meaningful one. We test it by predicting the future export 81

patterns of countries. Countries classified as out-competing in a particular product in a 82

particular decade show significant export growth patterns in that product in the 83

following decade. This means, for instance, that if Japan is classified as out-competing 84

in worldwide car exports in the 1960-1970 decade, then its car exports are going to grow 85

significantly in the 1970-1980 decade. This result is consistent across decades – with the 86

exception of the last decade for the lack of a long enough time span to test the data – 87

and across different product types – with the exception of the ones dominated by 88

profitable natural resources such as crude oil. 89

Even if we are not observing direct competition relationships, due to the correlative 90

nature of our edge creation process, the resulting roles are informative of future patterns 91

in global trade. Our method can be used to detect emerging countries in the global 92

market for a particular product. 93

Methods 94

The aim of this section is to describe the process starting from raw trade data to the 95

creation and analysis of multilayer competition network. We start by describing the 96

data sources and the cleaning phase. We then provide an informal example, before 97

detailing out the full procedure. 98

Data & Cleaning 99

The data contains the entire set of worldwide trade relationships from 1962 until 2013. 100

The data has been collected by the UN Comtrade organization 101

(https://comtrade.un.org/), and cleaned by CEPII [32]. A product is defined as a 4 102

digit SITC category. A product can be, for instance, poultry meat for eating (code 103

0123), or ferro-manganese (code 6714). 104

UN Comtrade gathers data about all sovereign countries and territories in the world. 105

Many of these sovereign entities are very small and cause wide fluctuations in the 106

observations. For this reason, we focus only on larger and more stable countries. We 107

drop countries with less than 300k inhabitants and/or with a total GDP lower than 300 108

million US dollars. Given our large time span, we also have data about countries who 109

do not exist any more (for instance, Yugoslavia). We drop the observations involving 110

them too. 111

Even if the data is gathered at a 4-digit level of detail, we find that this is too 112

granular for our analytic aims. We exploit the fact that SITC is a hierarchical 113

classification: all products whose code starts with the same digit are related to each 114

other. Thus we aggregate the trade data at the 1-digit level, summing up the trade 115

flows of all products classified under the first digit. 116

Finally, we represent the data as a four dimensional tensor Tp,i,e,y. The dimensions 117

of the tensor are: product (p), importer (i), exporter (e) and year (y). Basically, Tp,i,e,y 118

can be seen as a set of matrices T p,i
e,y , one for each pair of product p and importer i. The 119
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Fig 2. Timeline of Japan’s and Italy’s exports in the US car market in the 60s.

matrix contains, for each exporter e a timeline vector recording, for each year y, the 120

amount of trade in p flowing from e to i. So, each T p,i
e,y is a e× y matrix. 121

Inferring Competition Relationships 122

To better understand how the procedure works, let us start with an example detailing 123

how a single edge in our multilayer directed network is established. We consider the car 124

market in the United States. We focus on the export patterns of two countries in a 125

potential relationship of competition: Japan and Italy. Fig 2 depicts the share of US car 126

market of Japan and Italy, from 1962 to 1967. 127

Each step corresponds to a parameter in our methodology, which is reported 128

between parenthesis, and which we formally define in the rest of this section: 129

1. Detect whether there is an anti-correlation between the export patterns of the two 130

countries (δ); 131

2. Detect whether one of the two countries appeared from the market, while the 132

other disappeared (κ); 133

3. Detect whether the disappearing country did not reappear in the market 134

immediately after the event (λ). 135

In the first step we calculate the correlation coefficients of Japan’s and Italy’s export 136

timelines. The two timelines have a 1.67 correlation distance. If we assume that this is 137

higher than our δ parameter, we can say that there is a potential competition edge 138

between Japan and Italy. 139

In the second step, we check if either country appeared in the market while the other 140

disappeared. This is regulated by the parameter κ, which defines the relative market 141

share below which an exporter is considered to have “disappeared”. We do not set 142

κ = 0, because a complete disappearance is a rare event. If we set κ = 1%, we can say 143

that Italy disappeared while Japan appeared, suggesting that the competition edge runs 144

from Japan to Italy. 145

Finally, we check if Italy was absent from the US car market for at least λ years. 146

Assuming λ = 2, also this final test is positive. We then draw a directed edge in our 147

competition network from Japan to Italy. 148

We now describe more formally each step in the following subsections. We remind 149

that the same operation is performed for each product 1-digit class (from 1 to 8 150

excluding 9, since it contains miscellaneous products not related to each other), and for 151

each decade separately (1960-70, 1970-80, 1980-90, 1990-2000). 152
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Step #1: Detecting the Potential Edges 153

To detect the candidate relationships (i.e. the edges), we slice Tp,i,e,y such that we 154

consider each pair of product and importer country independently from all other pairs, 155

i.e. we analyze one T p,i
e,y matrix at a time. We column normalize each T p,i

e,y , such that 156

each entry will report the share e exported of p to i in y. We then calculate the 157

row-wise correlation distance between each pair of exporting countries: 158

de1,e2 = 1− corr(−→e1 ,−→e2),

where e1 and e2 are two exporting countries, −→e1 and −→e2 are the vectors of T p,i
e,y 159

corresponding to them, and corr is a function calculating the Pearson correlation of two 160

vectors. de1,e2 establishes the distance in the trends of e1 and e2, regardless of their 161

relative volume. Remember that here we are interested in linking countries that are 162

dissimilar to each other, so we perform an operation that is opposite to what is usually 163

done in network science: two countries with very different market shares are not 164

connected with an edge if their trends are similar. 165

de1,e2 takes values between 0 (−→e1 and −→e2 are perfectly correlated) and 2 (−→e1 and −→e2 166

are perfectly anti-correlated). de1,e2 equals to 1 for linearly uncorrelated vectors. The δ 167

threshold establishes the value below which we discard the potential edge. Given the 168

value domain of de1,e2 , δ must be higher than 1 (otherwise we would consider positively 169

correlated vectors). 170

Step #2: Detecting the Potential Edge Direction 171

To establish if the anti-correlation of exports can lead to a potential competition edge – 172

and its direction – we have several requirements to satisfy: 173

1. i must have not stopped importing p; 174

2. Either e1 or e2 has to have ceased to export p to i – this is the potential displaced 175

exporter; 176

3. Whenever e1 ceased to export p to i, e2 still has to be exporting the product, and 177

vice versa – this is the potential out-competitor exporter; 178

4. The potential displaced exporter must have been exporting p previously. 179

To satisfy requirements #1, #2 and #3, we use our second threshold, κ, which 180

represents the minimum export share to be considered still exporting p to i. If an 181

exporter e has less than κ market share of p in i, then e in this context is considered to 182

have ceased exporting. Being κ a relative threshold, we can make sure that the size of 183

the importing market is not affecting our definition of relationship, which would make 184

too easy to have competition relationships in small countries and small products. 185

Requirement #1 is now satisfied automatically: it is impossible to have a share of 186

export larger than κ if the denominator is 0 (i.e. i did not import p), because the 187

fraction would be undefined. 188

Each candidate edge is a quadruple (p, i, e1, e2). For each p and i, we binarize −→e1 189

and −→e2 as follows: 190

e∗y =

{
1 if ey > κ

0 otherwise.

where ey is −→e ’s value at time y. Then we calculate −→e1∗ ⊕−→e2∗, which is the XOR 191

product of the two vectors: the result is true for a year y if in y e1 exported more than 192

κ share of p to i and e2 did not, and vice versa. This satisfies requirements #2 and #3. 193
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We satisfy requirement #4 by removing the first streak of true values in −→e1∗ ⊕−→e2∗. 194

The first streak of true values represents a period in which either e1 or e2 did not start 195

exporting p to i yet. Thus, we cannot talk about either of them being displaced, 196

because they did not have a chance to interact with each other yet. 197

We can now easily detect the edge direction. The country which disappeared from 198

the importing market – say e2 – is the displaced one and it is thus on the receiving end 199

of the edge, which originates from the other country – in our case e1. 200

Step #3: Establishing the Edge 201

Before adding the edge to the multilayer competition network we have to ensure that 202

the displaced exporter has actually been displaced. We test this by checking if the 203

cessation of its exports has been longer than a certain number of years. 204

We satisfy this requirement by using our third parameter, λ, which represents the 205

minimum number of years needed to declare a potential displaced exporter out of the 206

market. This means that the displaced country has to cease exporting at least κ share 207

of p to i for λ consecutive years, while its out-competitor consistently stays above the κ 208

threshold in the same period. This means that we have to find at least λ consecutive 209

true values in −→e1∗ ⊕−→e2∗. 210

The result of these three steps is another tensor, Dp,d,e1,e2 . Dp,d,e1,e2 is a directed 211

multilayer network, where each layer represents a pair of product p and decade d. For 212

simplicity, D is collapsed over the importer dimension i using a logical OR operator. In 213

other words, each layer contains an directed graph connecting two countries (e1 → e2) if 214

their trends in exporting p during d satisfy all posited requirements for at least one 215

importer i: 216

�
−→e1 and −→e2 are strongly anti-correlated (correlation distance > δ); 217

�
−→e2 contains at least λ consecutive values < κ not at its beginning; 218

� The corresponding −→e1 values are ≥ κ. 219

We then say that e1 is an out-competitor of e2 in product p. The edges are weighted 220

according to in how many importers i this competition relationship has been established. 221

Detecting Roles 222

We now turn to the detection of node roles in the multilayer competition network. We 223

follow closely the methodology delineated in [31]. In that paper, Cooper and Brahona 224

propose to group nodes according to their role in the network, defined in terms of the 225

overall pattern of incoming and outgoing flows. According to this, we expect to find 226

three categories of countries: out-performing, displaced and transitioning. The roles 227

emerge by looking at the path profile of each node. A path profile is a vector computed 228

from the powers of the adjacency matrix weighted with a scale parameter. Then, we 229

define path profile templates and we cluster nodes according to the similarity their path 230

profiles have when compared to the templates. 231

Consider a directed network with N nodes and an asymmetric adjacency matrix M . 232

Consider its [Mk1] vector, where 1 is the N × 1 vector of ones. The i-th entry of this 233

vector is the number of displacement events happening in all chains of length k 234

originating from node i. For k = 1, [Mk1] is equivalent to the out-degree vector of M . 235

In the same way, the number of displacement events happening in all chains of length k 236

ending in node i is [M ′k1]i, where M ′ is the transpose of M . For k = 1, this is 237

equivalent to the in-degree vector of M . 238
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We construct a matrix that compiles the incoming and outgoing paths of all lengths 239

up to kmax by appending the column vectors indexed by path length and scaled by the 240

factors βk: 241

X =


x1

.

.

.
xN

 ≡ [. . . (βM ′)k1 . . .︸ ︷︷ ︸
kmax

| . . . (βM)k1 . . .︸ ︷︷ ︸
kmax

],

where β = α/λ1, with λ1 being the largest eigenvalue of the adjacency matrix and 242

α > 0. α governs how much weight we put on local or global flow structure. Setting 243

α ∼ 0 means that in- and out-degrees dominate over the other values when calculating 244

roles. Given the issues caused by using in- and out-degree that we will describe in the 245

next section, we aim at doing the exact opposite, and thus we set α = 1. Note that one 246

could set an α > 1, however that would mean that the farther relationships (mediated 247

by more than one edge) have more weight than the more proximate ones, which we 248

believe not to be reasonable. We also consider up to 6 degrees of separation in each 249

direction, i.e. kmax = 6. 250

By following this methodology, each row vector of X contains the flow profile of a 251

node in terms of the scaled number of displacement paths of all lengths starting and 252

ending at that node. Following [31], we group nodes if they have similar flow profiles. 253

Nodes in the same cluster have similar flow profiles, thus they play a similar role in 254

terms of the flow in the directed graph. To detect such nodes, we calculate the distance 255

of each country from a synthetic template of a perfect out-competing, transitioning, and 256

displaced exporter. We assign the country to the closest template according to the 257

cosine distance. The objective is to minimize the average cosine distance between a 258

country and its template. 259

To create our templates we need to ensure that each element in each row vector in X 260

takes value between 0 and 1: 261

X∗ =
X −min(X)

max(X)−min(X)
.

Note that this operation is done row by row, i.e. min(X) and max(X) are 262

calculated only considering the values of each row separately. In this way, each country 263

is a vector of values between 0 and 1 included. If we would took the global min(X) and 264

max(X), only one country could span the full domain value, narrowing down the values 265

of all other countries, and thus making the result dominated by outliers. As a result of 266

this operation, a hypothetical country i could be described by the following vector: 267

X∗i = [0.97, 0.94, 1, 0.99, 0.92, 0.77︸ ︷︷ ︸
d

, 0.42, 0.11, 0.14, 0.13, 0, 0.09︸ ︷︷ ︸
o

].

Here, the first kmax values are the displaced (d) role scores, while the latter kmax 268

values are the out-competing (o) role scores. As a convention, we always list first the d 269

scores in decreasing order and then the o scores in increasing order, so that the two 270

middle values of the vector are always d1 and o1, i.e. the normalized in-degree and the 271

out-degree. Generally speaking, the dn entry in the ith row of matrix X∗ is the 272

(normalized) number of paths of length n ending at node i. A high score in displaced 273

roles means that the country tends to be displaced by countries that are displaced 274

themselves. The opposite is true for the out-competing role scores. Since we know that 275

all scores must take value between 0 and 1, creating a cluster template is now trivial: 276
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O = [0, 0, 0, 0, 0, 0︸ ︷︷ ︸
d

, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
o

]

is an hypothetically perfect out-competing exporter, with zero in-degree and 277

maximum out-degree. With the same logic, we can define the perfect displaced country 278

D, and the middle point, the transitioning country T : 279

D = [1, 1, 1, 1, 1, 1︸ ︷︷ ︸
d

, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
o

],

T = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5︸ ︷︷ ︸
d

, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5︸ ︷︷ ︸
o

].

For each country, we calculate the cosine distance from these hypothetical perfect 280

scenarios. We chose the cosine distance, because the intensity of the vector is not 281

important: what matters is its direction. We assign the country to the closest template, 282

i.e. the one scoring the lowest cosine distance among the three. The average leftover 283

cosine distance (energy) is a measure of how good the clustering was, i.e. how similar 284

each country is to its assigned template. 285

If an exporter has a high values for the out-degree roles and low ones for in-degree 286

roles, then it is assigned to the “Out-competing” cluster. Vice versa, low values for the 287

out-degree roles and high ones for in-degree roles will place the country in the 288

“Displaced” cluster. In all other cases, when the out- and in-degree roles have 289

comparable values, the exporter is classified as “Transitioning”. 290

Results 291

Competition Network Statistical Analysis 292

The fundamental assumption of this paper is that the competition network that we 293

build using the methodology discussed in the previous section contains information that 294

will allow us to predict an exporter’s future performance in the global market. If a 295

country can out-compete many other countries in a product, then it is expected to 296

export more of that product. The first question one might ask is: why do we need to 297

calculate node roles? The number of times an exporter out-competes its rivals is simply 298

its out-degree. Could this simpler statistical property inform us about export dynamics? 299

There are two reasons why this is not the case. The first reason is that out- and 300

in-degree in the competition network are highly correlated. The second reason is that 301

the competition network’s structure is more complex than one would assume. 302

Fig 3 shows the out- and in-degree correlation. On the left we show the out-degree 303

distribution per country, and in the middle the in-degree distribution. We can see that 304

both distributions are very similar. In fact, the top and the bottom countries in these 305

distributions are almost the same, sometimes in a slightly different order. On the right, 306

we show the correlation directly. It is not possible, from this picture, to characterize any 307

country as predominantly out-competing its rivals, because the same country will have 308

an almost equal amount of cases in which it is displaced. 309

Regarding the second reason, we observe a number of topological properties that we 310

would not expect to find in a competition network. The first one is reciprocity. When 311

country a displaces country b in a niche, we would expect it to do so because fitter for 312

that particular market. Yet, we observe a large number of reciprocal edges. This means 313

that, after some time, country b reappears in the niche and displaces country a. Across 314
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our problem space (for all decades, products and parameter choice) the median 315

reciprocity was 11.38%. 316

The second surprising topological feature is the presence of a high number of 317

triangles. Triangles are surprising because we would not expect a displaced country to 318

displace a displacer. Yet, this happens frequently. Fig 4 shows on the left the seven 319

possible types of triangles that can appear in a directed network. On the right, it 320

depicts the counts of each type of triangle in ∼100 randomly chosen networks across all 321

decades, products and parameter choices. Triangle types 5 and 7 are the most common, 322

7 being the case in which all three exporters are displacer of each other. 323

Fig 5 shows the distribution of number of displacements per one digit SITC product. 324
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We can see that there are products that are more dynamic than others. 325

Role Clusters 326

Before performing the clustering and the prediction task, we need to determine the 327

optimal parameter choice, and evaluate the robustness of our results to this choice. 328

Many topological properties of the multilayer networks are dependent on our choice of 329

parameters. We investigate the direct effect on clustering quality of the three 330

parameters δ, κ, λ. For each combination of parameter we calculate the average cosine 331

distance between a country and the cluster template to which it is the most similar. 332

Since we have three parameters, the space of this search is three dimensional. To 333

explore it, we project it into three two dimensional slices. We fix two parameters and 334

then we calculate the average cosine distance (energy) across the omitted dimensions. 335

Fig 6 reports the result. 336

From the figure, we can see that the most important parameter that creates a 337

rugged landscape is λ – the length of a displaced exporter disappearance necessary to 338

determine whether it is really out of the market. This is intuitive: since we are 339

considering a decade-long period, if we require long disappearances (e.g. 8 years) the 340

interval in which the displacement could happen becomes very narrow (e.g. only the 341

first two years of the period). As a consequence, there are going to be very few edges in 342

our competition network, and displacements happening after (10− λ) years from the 343

beginning of the decade are going to be ignored. 344

On the other hand, the δ-κ space is very smooth, showing that results are going to be 345

consistent no matter the level of correlation distance we require (δ) or the disappearance 346

threshold (κ). Between the two, δ seems to be more important (there is a weak left to 347

right gradient). Again, this is unsurprising for the same reason as before: the higher the 348

δ the more demanding we are in our edge creation process. For δ > 1.5 we start having 349

degenerate networks which are sparser and sparser, and where triangles are impossible. 350

Once we fix δ, κ, λ such as to minimize the clustering energy, we obtain our final 351
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clusters, dividing countries in out-competing, transitioning and displaced for each 352

decade and product category. As discussed in the methods section, we have three 353

templates and countries are matched to the template most similar to them. Here, we 354

visualize one instance of such clustering. We average the role scores for all countries in 355

each cluster. Fig 7 depicts the result. 356

From the figure, we can see that the clustering procedure is able to capture the 357

essence of the network roles. Countries in the out-competing cluster have small 358

displaced role scores on average, and high out-competing scores. The converse is true 359

for countries in the displaced cluster. As for the transitioning countries, they tend to 360

have high scores in both role classes. The only exception is their low score in the first 361

displaced role. This means that transitioning countries tend to have low in-degree, 362

although that in-degree is generated from countries with a very high in-degree – 363

otherwise also the other displaced scores would be low. 364

Prediction 365

Once we fix δ, κ, λ such that we obtain the lowest residual energy (i.e. average cosine 366

distance), we can perform a simple predictive task. We calculate the clusters using 367

exclusively data from a given decade, say 1971 to 1980. Then, we look at the exports of 368

each country in that product in the next decade – from 1981 to 1990. We calculate the 369

slope of the decade trend, normalized with the maximum export value of the top 370

exporter in that product in that period. In this way, we have for each country its 371

competition network cluster for a decade and its corresponding export growth in the 372

following decade. We then calculate the mean export growth rate for each country 373

cluster. We also calculate the standard error of the mean. This is an out-of-sample 374

prediction, since there is no information that is used both for calculating the clusters 375

and the growth rate: the sets of years considered are disjoint. 376

We perform this operation for all decades for all product classes. Table 1 reports the 377

results – S1 Table in the Supplementary Information contains the legend for each 378

product code. Let us consider decade 1960-1970 in product 4 (fourth row). The row 379

tells us that the countries in the out-competing cluster grew on average 4.3% per year 380

and the ones in the transitioning cluster by .1% per year. Since the displaced cluster’s 381

growth average was less than two standard errors from zero, we cannot be sure that 382

their observed growth rate is significantly different from zero. The transitioning cluster 383

was at least 2 standard errors away from zero (i.e. there is a 1 in 22 chance that the 384

result could be observed if the null hypothesis is true); while the out-competing 385

estimate is more than 3 standard errors from zero (1 in 370 chance of observing such 386

result from the null hypothesis). 387

Almost all cases considered show that countries in the out-competing clusters 388

performed well, given that their average slope is significantly higher than zero (which 389

would imply no growth). Both the displaced and the transitioning countries have a 390

slope significantly lower than the countries in the out-competing cluster. In many cases 391

they still experienced export growth, but that export growth was significantly lower 392

than the one experienced by the out-competing countries. 393

There are two main deviations from this rule. The first involves product 3, which 394

shows negative coefficients and/or lower R2. This is unsurprising, given that SITC 395

category 3 is dominated by the product with the highest trade traffic: crude oil. Since 396

its dynamics are more related to geological discoveries than to the ability of countries to 397

compete, it is expected to show counter-intuitive patterns. The second exception is for 398

all estimates using the 2000-2010 data for calculating the clusters. Also in this case this 399

failure can be attributed to external causes. The trade data we have runs only until 400

2013. 2011-2013 is too short of a period to detect reliable trends, thus the test data is 401

not good enough to evaluate our clustering. 402
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Decade SITC Out-competing Transitioning Displaced R2

1960-1970 1 0.048*** 0.005** 0.004** 0.151
1960-1970 2 0.039*** 0.005** 0.004*** 0.169
1960-1970 3 0.043*** 0.005* 0.004* 0.167
1960-1970 4 0.043*** 0.001* 0.003 0.129
1960-1970 5 0.144*** 0.017*** 0.006*** 0.266
1960-1970 6 0.074*** -0.001* 0.006* 0.298
1960-1970 7 0.094*** 0.007*** 0.002*** 0.381
1960-1970 8 0.068*** 0.012** 0.008** 0.186
1970-1980 1 0.025*** 0.005* 0.001** 0.165
1970-1980 2 0.024*** 0.008** 0.001*** 0.310
1970-1980 3 -0.019*** -0.000 -0.000 0.068
1970-1980 4 0.027*** -0.000* 0.001* 0.170
1970-1980 5 0.131*** 0.002*** 0.007*** 0.347
1970-1980 6 0.052*** 0.004*** 0.003*** 0.325
1970-1980 7 0.063*** 0.007*** 0.002*** 0.401
1970-1980 8 0.107*** 0.012*** 0.004*** 0.515
1980-1990 1 0.021*** 0.002*** 0.002*** 0.260
1980-1990 2 0.009*** 0.002* 0.001** 0.163
1980-1990 3 0.008*** -0.000 0.002 0.075
1980-1990 4 0.046*** n/a 0.002*** 0.325
1980-1990 5 0.076*** 0.014*** 0.005*** 0.305
1980-1990 6 0.027*** 0.011 0.002** 0.301
1980-1990 7 0.061*** 0.004*** 0.002*** 0.464
1980-1990 8 0.029*** 0.002** 0.002** 0.148
1990-2000 1 0.042*** 0.008* 0.005* 0.161
1990-2000 2 0.024*** 0.004*** 0.001*** 0.279
1990-2000 3 0.026*** 0.005* 0.003* 0.180
1990-2000 4 0.055*** 0.002*** 0.002*** 0.183
1990-2000 5 0.103*** 0.003*** 0.005*** 0.330
1990-2000 6 0.077*** 0.007*** 0.005*** 0.282
1990-2000 7 0.055*** 0.013* 0.001** 0.227
1990-2000 8 0.024*** 0.003 0.001* 0.141
2000-2010 1 0.026*** 0.006 0.005 0.063
2000-2010 2 -0.013*** -0.000* -0.000* 0.270
2000-2010 3 0.003 -0.000 -0.002 0.005
2000-2010 4 -0.027*** 0.001 0.000 0.050
2000-2010 5 0.013 0.004 -0.001 0.025
2000-2010 6 -0.015* -0.002 -0.003 0.017
2000-2010 7 0.014 0.003 0.000 0.018
2000-2010 8 0.015** 0.001 0.001 0.037

Table 1. The mean export growths per country. For each decade and product class
(first two columns) we test if the corresponding clusters have an export value growth in
the following decade in the same product significantly higher than zero. From left to
right the means of: out-competing, transitioning, and displaced clusters. Last column is
the R2 of a regression using the clusters as fixed effects. (*** 3σ, ** 2.5σ, * 2σ)
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Decade Out-competing Transitioning Displaced R2

1960-1970 0.079*** 0.014*** 0.007*** 0.269
1970-1980 0.045*** 0.001** 0.004* 0.187
1980-1990 0.030*** 0.000* 0.001* 0.300
1990-2000 0.058*** 0.028* 0.006*** 0.230
2000-2010 0.010 0.006 -0.001 0.018

Table 2. The mean export growths per country, aggregated to the total export of the
country. The coefficients can be interpreted as discussed in the caption of Table 1.
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Fig 8. The distribution of growth rates for countries classified in the different clusters.
Box plots report the 10th, 25th, 50th, 75th, and 90th percentile. Outliers are reported
with circles. From left to right: 1981-90 growth in SITC product 8 (Miscellaneous
manufacturing); 1991-2000 growth in SITC product 1 (Beverages and tobacco); and
2011-13 growth in SITC product 3 (Mineral fuels, lubricants and related materials).

The method works at different levels of data granularity. To test this, we repeat the 403

full analysis, collapsing the one-digit product categories to a single product, which 404

stands for the entire export basket of a country. Once we perform the analysis, we still 405

find that the out-competing countries grow their exports significantly more than the 406

transitioning and displaced countries. Table 2 reports the coefficients, per decade. For 407

instance, in the 1970-1980 decade, the countries which were classified as out-competing 408

in 1960-1970 grew on average almost 8%. The transitioning countries grew 1.4%, while 409

the displaced countries grew only 0.7%. Just as in the previous case, we fail to predict 410

the last decade for lack of long enough data. 411

We pick some interesting cases to represent graphically: our best, most average and 412

worst prediction among the ones reported in Table 1. Fig 8 depicts the slope 413

distribution in each cluster as box plots. 414

In our best case, the out-competing cluster was able to correctly capture all the 415

eleven fastest growing countries in the manufacturing sector in the 80s. The twelfth 416

country, Thailand, had less than a third the average export growth rate in the sector 417

(∼ 4.92%) than the average of the top countries. 418

To give a better sense of this data we focus on one case from this example. Product 419

8 includes all manufactoring sectors, except machines (which is product 7) or 420

manufactory chiefly focused on a single material (product 6). This category includes 421

many products with very related machine-intensive production process, for instance a 422

variety of garments. One of the rising economies in this sector in the 80s was China. 423

China grew across the board in this sector, and displaced many countries in many 424

markets. For instance, in 1986, China provided only .64% of watches imported in the 425

United States, while France provided 1.1% (http://atlas.media.mit.edu/en/ 426

visualize/tree_map/sitc/import/usa/show/8851/1986/). By the end of the 427

decade, in 1990 China rose almost tenfold in the market to provide 5.4% of US 428

imported watches, while France halved to .58% (http://atlas.media.mit.edu/en/ 429

visualize/tree_map/sitc/import/usa/show/8851/1990/). 430

For the average case, we focus on the nine fastest growing countries, of which the 431
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Fig 9. The aggregate coefficient values across all product across all decades (y axis) for
increasing decade lag (x axis). A decade lag equaling one means that we predict the
decade after the data used to calculate the cluster (i.e. the main result of the paper). A
decade lag equaling two means we predict two decades after the cluster data: if we had
cluster data from 1960 we predict 1980 growth; if we had cluster data from 1980, we
predict 2000 growth.

out-performing cluster captured seven. The out-performing cluster captured all four 432

countries that had an average yearly growth rate higher than 5%. Finally, the last plot 433

shows a case in which the clustering did not manage to make sense of the export 434

patterns. This is due to the fact that every country is an outlier in this product 435

category, due to the importance of oil. The discovery of a large reservoir or the drying 436

up of another one is unpredictable using the past trade patterns, and so we expect our 437

methodology to fail in this case. 438

One could argue that we are capturing a random fluctuation in world trade trends. 439

A displacement event might be a fluke of a country entering into a market niche and 440

then exiting after some time. If this objection would be true, we should expect to 441

observe reversion to the mean. In other words, if we use 1960 clusters to predict 1970 442

trade shares, then 1980 trade shares are expected to shrink by the same amount they 443

grew in 1970. This is not the case. 444

Fig 9 shows the aggregate coefficient values across all products across all decades for 445

increasing decade lag. In the figure, we exclude product 3 and clusters from 2000, for 446

the reason explained above. The figure shows average and standard error of the 447

regression coefficients, per decade lag. For instance, the first distribution (marked 1) is 448

the average and standard error of the “Out-competing” column of Table 1. The second 449

distribution reports the same for the regression coefficients predicting growth rates two 450

decades away: for instance, we calculate the clusters using the 1960-1970 data and we 451

predict the growth rate in the 1980-1990 period, i.e. two decades away. We see no sign 452

of mean reversion. In fact, clusters from 1960 still predict – on average – a significant 453

increase in market share in 2000, four decades later. The standard error range increase, 454

as expected: the further away the prediction, the more uncertainty there is. 455

Validation 456

Here we validate the role detection methodology against a series of possible objections. 457

The first issue we address is the arbitrariness of the role detection parameters. 458

In the paper we delineate a procedure to choose the δ, κ, and λ parameters. The 459

role detection strategy introduces other parameters that influence the result, such as 460

kmax and α. However, we do not provide an equivalent procedure to choose them. The 461

reason to fix kmax = 6 and alpha = 1 comes from their meaning. kmax should be set 462

equal to the network’s diameter, because paths longer than the diameter do not provide 463

any additional topological information. On the other hand, α = 1 is the most 464
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Fig 10. Robustness tests for kmax (left) and α (right). For different choices of these
parameters, we report the effect in the R2 of the prediction. We focus on product 1 in
the 1960-1970 decade.

reasonable choice because it gives each role an equal weight: choosing a different weight 465

for different role would require a reason which we cannot provide. 466

What is the impact of these choices on the quality of our prediction? We pick 467

product 1 in the 1960 decade to perform such exploration. Fig 10 shows their effect on 468

the R2 of our prediction. Note that, since this test involves directly our predictive task, 469

it cannot be used to find the optimal parameter choices, because that would imply 470

overfitting. If our best prediction comes with, say, kmax = 4 we cannot set kmax to that 471

value, because there would be no way to know this before running the test. 472

Fig 10 (left) shows that kmax has a minimal impact on the prediction quality. Any 473

value between 3 and 8 is acceptable. Performance deteriorates for high values, as more 474

and more noisy information from long paths is included, while it also deteriorates for 475

small values, when not enough information from the network is included. 476

Fig 10 (right) shows that the impact of α is more difficult to interpret. As a result, 477

there is no specific guidance whether to choose α < 1 or α > 1. 478

We now move to addressing the issue that our methodology is a correlative analysis. 479

Correlations arise randomly even for null phenomena, provided there are enough of 480

them. If we generate hundreds of random countries with random export patterns, some 481

of them will have anti-correlations strong enough to clear our δ threshold. 482

To address this concern we pick 100 random triplets of exporter-importer-product. 483

For each exporter we generate an expected export value using a zero-inflated Poisson 484

negative binomial model – meaning that the export value is directly proportional to the 485

total amount it exported of that product, and inversely proportional to the 486

importer-exporter geographical distance, controlling for the fact that trade data is 487

sparse and with a heavy tail distribution, as suggested in [33]. Then we apply our 488

methodology to detect displacements. The expectation is that if our methodology is 489

capturing some real phenomenon, then it should detect more displacements from the 490

observed data than from the random data. This expectation is confirmed, since on 491

average we observe two times more displacements than random expectation. 492

Still, this means that we expect half of inferred displacements to be noise. This is 493

related to our second validation analysis. Noise connections link countries at random. 494

In such networks, there are no non-local phenomena. Our role detection strategy 495

operates under the assumption that the competition network is non-random, and that 496

the kth role score is meaningful. If a random network with the same in- and out-degree 497

distribution – but without any non-local phenomena – would return comparable kth 498

role scores, then it means that the competition network could be dominated by the 499

noisy connections. 500

To address this issue we generated 80 random networks which preserve the exact in- 501

and out-degree distributions. Each random network is generated by picking pairs of 502

PLOS 15/20



edges at random and changing their endpoints, following [34]. We perform our analysis 503

and we obtain the out-competing, transitioning and displaced clusters for our shuffled 504

networks. We then calculate the adjusted mutual information between the shuffled 505

network clusters and the observed ones. The average adjusted mutual information we 506

obtained is equal to .1± .02 (the theoretical maximum for identical clusters is 1, and 0 507

means completely independent clusters). We consider this as an argument supporting 508

our clustering, given that shuffled networks with no non-local interactions return 509

clusters which are not related with the ones we observe. 510

Moreover, the clusters obtained from the shuffled networks do not divide countries 511

well when it comes to their export growth. We replicate the result for the 1960-1970 512

decade in product 1 (first row of Table 1). The clusters from the shuffled network 513

returned very similar growth rates with each other, and significantly different from the 514

non-shuffled network ones: 1.47% (shuffled) vs 4.8% (observed) for out-competing, 515

1.45% (shuffled) vs 0.5% (observed) for transitioning, and 1.24% (shuffled) vs 0.4% 516

(observed) for displaced. The shuffled network preserved the in- and out-degrees but 517

disrupted non-local dynamics, and this analysis proved that this disruption significantly 518

affects the ability of sorting through the countries. 519

A third robustness check involves our clustering procedure. Since we compare the 520

exporter role vectors to templates, our clustering is supervised, i.e. we impose what the 521

clusters should look like. On the one hand, this enhances the interpretability of the 522

extracted clusters, on the other hand it might introduce biases. We test for possible 523

biases by designing an unsupervised version of the clustering. 524

In this version, we still fix the number of desired clusters to three (out-competing, 525

transitioning, displaced), but we do no provide templates. Rather, we run a kMeans 526

algorithm on the role matrix. We then correlate the results of the supervised and 527

unsupervised clustering. We perform this test on a subset of our parameter space. We 528

obtain a correlation of .932± .032. Since we obtain a very high correlation, we conclude 529

that using a supervised strategy did not introduce significant bias: the extracted clusters 530

are virtually indistinguishable from the ones extracted with an unsupervised technique. 531

Finally, we test whether the role detection and the clustering procedure are 532

necessary at all. When motivating the method we use, we showed that the outdegree 533

and the indegree are highly correlated, thus they cannot be used for prediction. 534

However, one could use their difference for making the prediction. In Fig 11 we show 535

the predictive power such operation has. We predict the growth in export with the 536

logarithm of the outdegree/indegree ratio. In all cases but two, such test returns worse 537

results than the role detection method – shown in the figure below the identity line. 538

Moreover, by clustering the role scores we are compressing their information: we go 539

from a vector of 12 numbers to a single variable that can have only three values 540

(out-competing, transitioning, displaced). We do so because we believe that the role 541

vectors might have fluctuations that might introduce noise, and that noise will cancel 542

out if we cluster the vectors. To verify if this is the case, we test the same linear 543

regression model we used in the previous section, using the 12 role scores instead of the 544

cluster labels. Every single model has lower R2 than the corresponding model using the 545

cluster labels (average −.073± .044). We can conclude that the clusters are indeed 546

improving the quality of the prediction. 547

Discussion 548

In this paper, we adopted an ecosystem approach to the analysis of the global trade 549

patterns. We see exporters as organisms competing for resources in different market 550

niches. A market niche is a country importing a product. The assumption is that 551

exporters want to out-compete other exporters, attempting to occupy the entire market 552
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Fig 11. The relationship between the R2 export growth prediction using the role
clusters (x-axis) and using the logarithm outdegree/indegree ratio (y-axis). Each
observation is a decade-product combination: the x-axis values are the R2 values
reported in Table 1, excluding product 3 and the 2000-2010 decade. The black line is
the identity line: observations below the line are the ones for which the role clusters
performed better than the log degree ratio.

niche. The appearance of a new exporter in a niche can be followed by the 553

disappearance of another country. This is what we call a displacement event. We create 554

a formal definition of displacements and we systematically collect all of them along a 555

period spanning fifty years. A displacement event can be represented as a directed edge 556

going from the out-competing exporter to the displaced one. We call the collection of all 557

displacements a “competition network”, which is a weighted directed multilayer 558

network, where each layer is a product class. 559

While the in- and out-degree of a node in a competition network have an intuitive 560

interpretation – being the number of displacements experienced and caused by an 561

exporter, respectively –, we show that in practice these measures cannot be used for 562

classifying countries. The reason is their very high correlation. To fix this issue, we 563

calculate network roles based on in- and out-degree flows. By clustering nodes according 564

to their role score, we are able to classify them in three categories: out-competing, 565

transitioning, and displaced. We show that these classes can be used to predict the 566

future performance of an exporter in a particular market, in term of growth of total 567

export value. 568

Our methodology has several issues. First, it does not consider actual displacements: 569

the edge creation process is correlative by design, so we are not really capturing if the 570

appearance of a new exporter really caused the disappearance of another. Second, it 571

cannot be applied to all product classes: our predictions fail when considering natural 572

resources composing the vast majority of some countries’ exports, such as crude oil. 573

Finally, we have not built a formal theory of why the competition network roles are 574

predictive: we do not control for confounding factors that might drive both growth in 575

exports and the position of a country in the network. 576

Conclusion 577

Notwithstanding the issues discussed in the previous section, our paper provides a 578

useful tool to make sense of the current export patterns, and it paves the way for future 579

research. The fact that we cannot predict the growth in natural resources is not crucial, 580

as it makes little sense to plan a development strategy by aiming at discovering oil. 581

Countries are more interested in developing capabilities for sustainable growth. More 582

importantly, even if we cannot disentangle roles from other confounding factors, our 583

methodology can be used as an easy-to-implement canary indicator to identify future 584
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market-leading exporters in a given product. Given that success in exporting a product 585

can be a telltale sign of other societal indicators such as income inequality [35] and 586

poverty traps [36], the reach of our methodology can span multiple potential 587

applications. 588

We see several future developments for this paper. First, we performed our analysis 589

at a very aggregated product classification level (one digit SITC codes). We can 590

increase the level of detail up to four digits (from ten to a thousand products). At such 591

granularities, new challenges arise: displacements in a product might be predictive of 592

growth in other, more profitable products, as countries might move from textile to 593

machinery manufacturing. Second, we could tackle the issue of causality, investigating 594

case studies of actual displacements that took place in economics history. Finally, we 595

could explore the confounding factors of our predictive task, and identify which factors – 596

relevant for economics thinking – are determining the position of exporters in the 597

competition network. 598
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S1 File. The file contains the data and code to reproduce the main results in the
paper, namely Table 1 and Fig 8.

S1 Table. The SITC product classification legend, showing the correspondence
between each product code and its label.
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