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ABSTRACT

Community Discovery in networks is the problem of detect-
ing, for each node, its membership to one of more groups
of nodes, the communities, that are densely connected, or
highly interactive. We define this problem for multidimen-
sional networks, i.e. where more than one connection may
reside between any two nodes. We introduce two measures
able to characterize the communities found. Our experi-
ments on real world data support the methodology proposed,
and open the way for a new class of algorithms, aimed at
capturing the multifaceted complexity of connections among
nodes in a network.

Categories and Subject Descriptors: G.2.2 [Graph The-
ory]: Graph Algorithms; H.2.8 [Database Applications]: Data
Mining

General Terms: Algorithms, Theory

Keywords: Multidimensional Network Analysis, Commu-
nity Discovery

1. INTRODUCTION

Inspired by real-world scenarios such as social networks,
technology networks, the Web, and so on, in the last years,
wide and multidisciplinary research has been devoted to the
extraction of non trivial knowledge from such networks. One
crucial task in network analysis is Community Discovery,
i.e., the discovery of group of nodes densely connected, or
highly related. There exist many techniques able to iden-
tify communities in networks [2], allowing to detect hier-
archical connections, influential nodes in communities, or
just group of nodes that share some properties or behaviors.
Among the most popular approaches, we recall: the prolific
modularity-oriented class [1]; a label propagation approach
[5]; and a community discovery algorithm based on random
walks [4]. Most of the existing approaches are limited to
monodimensional networks, i.e. networks where there can
be only one interaction between any two nodes. We deal
with multidimensional networks, where multiple connections
may exist between a pair of nodes, reflecting various interac-
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tions (i.e., dimensions) between them. Multidimensionality
in real networks may be expressed by either different types
of connections (two persons may be connected because they
are friends, colleagues, and so on), or different quantitative
values of one specific relation (co-authorship between two
authors may occur in several different years, for example).
In this scenario, we introduce the problem of Multidimen-
sional Community Discovery. An example of multidimen-
sional community discovery algorithm exists in literature.
In [3] the authors extend the definition of modularity to fit
to the multidimensional case, which they call “multislice”.
However, in this work authors do not consider any defini-
tion of “multidimensional community”, neither they charac-
terize and analyze the communities found.Instead, we define
a concept of multidimensional community, and we introduce
two new measures aimed at analyzing the multidimensional
properties of the communities discovered. We then show the
results obtained by applying our framework on real-world
networks, giving a few examples of interesting multidimen-
sional communities found in a movie collaboration network.

2. FINDING AND CHARACTERIZING
MULTIDIMENSIONAL COMMUNITIES

We use a multigraph to model a multidimensional network
and its properties. For the sake of simplicity, in our model
we only consider undirected multigraphs and since we do not
consider node labels, hereafter we use edge-labeled undirected
multigraphs, denoted by a triple G = (V, E, D) where: V is a
set of nodes; D is a set of labels; E is a set of labeled edges,
i.e. the set of triples (u,v,d) where u,v € V are nodes
and d € D is a label. Also, we use the term dimension to
indicate label, and we say that a node belongs to or appears
in a given dimension d if there is at least one edge labeled
with d adjacent to it. We assume that given a pair of nodes
u,v € V and a label d € D only one edge (u, v, d) may exist.
Thus, each pair of nodes in G can be connected by at most
| D| possible edges.

2.1 Multidimensional Community

Adding multidimensionality to the problem of community
discovery leads to an opinable concept of multidimensional
community. We start with a high-level possible definition,
then we add more semantic to it.

DEFINITION 1 (MULTIDIMENSIONAL COMMUNITY). A
multidimensional community is a set of nodes densely con-
nected in a multidimensional network.

While in a monodimensional network the density of a com-
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Figure 1: Multidimensional communities

munity refers unambiguously to the ratio between the num-
ber of edges among the nodes and the number of all possi-
ble edges, the multidimensional setting offers an additional
degree of freedom. Consider Figure 1: in (a) we have a com-
munity whose density mostly depends by the connectivity
provided by one dimension; in (b) we have a different situa-
tion, as both the dimensions are contributing to the density
of the community. Should the two be considered equivalent
or can we discern among them? In order to answer this ques-
tion, we define two measures, v and p, aimed at capturing
two different phenomena that can be detected in a commu-
nity. Hereafter, we use this notation: ¢ is a multidimensional
community; d is a dimension in D; D, is the subset of D ap-
pearing in ¢; P is set of pairs (u, v) connected by at least one

dimension in the network; P C P is the set of pairs (u,v)

connected exclusively by one dimension; P = P\ P is the
set of pairs connected by at least two dimensions; P. is the
subset of P appearing in ¢; P. 4 is the set of pairs (u,v) in
c connected at least in d and P.q C P, 4 is the set of pairs

(u,v) in ¢ connected exclusively in d; P. C P is the subset

of P containing only pairs in c.

2.2 Complementarity ~

The first measure, v, that we call complementarity, is the
conjunction of three concepts: variety V., i.e. how many
different dimensions are detectable among the community c;
exclusivity &, i.e. how many pairs of nodes are connected
by just one dimension within ¢; homogeneity ., i.e. how
uniform is the distribution of the number of edges per di-
mension in c. We want this measure to be higher when each
of the above is high. A natural way to achieve this is to
aggregate them by their product:

Ye = Ve X Ec X He (1)

We now have to define the three concepts. Variety can be
computed by b Do — 1 o
° o IDl-1
as the number of dimensions expressed with the community
c over the total number of dimensions within the network.
The two negative terms serve as corrections to make Vari-
ety take values in [0, 1]. Note that Variety defined as above
would be undefined when |D| = 1, but this would mean hav-
ing a monodimensional network, where the use of v would

be meaningless.

Exclusivity can be computed as the ratio between the
number of exclusive connections within the community and
the total number of connected pairs in c:

o ZdeD ‘Pc,d| (3)
‘ | Pe|

This term is equal to zero when there are no exclusive con-
nections, i.e. every pair of nodes in c is connected by at least
two dimensions, while it is equal to one when every pair in
c is connected by only one dimension. The formula is not
defined for |P.| = 0, which happens only for communities of

only one node, for which it has no sense to compute ~.
Finally, we have to define Homogeneity. We want this
term to be equal to one when the edges within the commu-
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nity are uniformly distributed among the dimensions repre-
sented in c. The simplest way to measure this is to look at
the standard deviation of the distribution of the edges in ¢
on the dimensions. We define:

o = ZdeD (|Pc,d (4)

|D|

where avg. is the mean of the distribution, as the standard
deviation of the number of edges per dimension in ¢, and:

(maz(|P.al) — 1)*
- (5)
where max(|Pe,q|) is the number of edges belonging to the
dimension more represented in ¢, as the maximum theoretic
standard deviation. Then, we can define Homogeneity as:

He=1- —= 6)

O-Enaz
where we subtract the right term to one, in order to make H.
equal to one when the right term is zero, i.e. when the edges
are uniformly distributed among the different dimensions.
If we could have the complete set of communities of a

mazx,

network, we could make a more precise estimation of o

(maz (| Pe,a|) — min(| Pe,al))®

5 (7)
where min(|P.,q|) is the number of edges belonging to the
dimension having the lowest number of edges among all the
communities.

In the exceptional case in which all the communities would
see all the dimensions represented with the same number
of edges, the two normalization coefficients ¢.*** would be
equal to zero, making the right term of Equation 3 unde-
fined. In this case, being the denominator an upper bound,
also the numerator would be equal to zero. But this is the
ideal topology of a network where the Homogeneity is maxi-
mum since all the edges are uniformly distributed, and then
we can handle this case, without lack of generality, by defin-

ing H. as:
He = { (8)

EXAMPLE 1  (MULTIDIMENSIONAL COMMUNITIES AND 7).
Consider Figure 1. We see three different multidimensional
communities, each of them with different multidimensional
structures: in (a), the standard deviation of the number of
edges per dimension is the maximum possible, hence H. = 0,
thus v = 0; in (b), every term of the complementarity is
equal to one, thus v = 1; in (c), the exclusivity is zero, as
every pair is connected by two dimensions, hence v = 0.
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ifo.=0
otherwise

2.3 Redundancy »

The second measure we define is the redundancy, captur-
ing the phenomenon for which a set of nodes that constitute
a community in a dimension, constitute a community also
in other dimensions. We can see this measure as a simple
indicator of the redundancy of the connections: the more
dimensions connect each pair of nodes within a community,
the higher the redundancy will be. We can then define p
by counting how many pairs have redundant connections,
normalizing by the theoretical maximum:

poe 3 Hai3wvd € by
‘ — |D| % |Pe|
(u,v)EP,:

With the help of Figure 1 we see how p takes values in
[0,1]: in 1(b), each pair of nodes is connected in only one

9)



dimension, then |P.| = 0 and the numerator is equal to zero;
in 1(c), all the node pairs are connected in all the dimensions
of D, which is equivalent to the number of connected pairs
|P.| multiplied by the number of network dimensions |D]|
(the denominator), making p = 1. We see that p is undefined
for communities formed by one single node, where |P.| = 0
and then the denominator is equal to zero. For this type
of communities, however, the redundancy measure is not
meaningful, thus we can ignore this case.

2.4 Problem definition

We can now formulate the problem under investigation:

PROBLEM 1
G, find the complete set of multidimensional communities C,
and characterize each ¢ € C according to v and p.

3. A FRAMEWORK FOR mcD

A complete solution for our problem would require to de-
sign an algorithm for extracting multidimensional communi-
ties, driven by the multidimensional density of the connec-
tions among nodes. However, it is difficult to define multidi-
mensional density as universal, which is exactly what makes
~ and p both meaningful. In addition, we believe that trivial
design choices may lead to an algorithm producing commu-
nities with distributions of 7 and p possibly unfairly unbal-
anced by the decisions taken. Moreover, we believe that the
main contributions of this paper are the problem definition
and the characterization of the communities by the intro-
duction of v and p. For all these reasons, here we propose
a different solution based on existing, monodimensional, al-
gorithms.

In order to be able to apply existing solutions to mul-
tidimensional network, and to be able to extract multidi-
mensional communities, we have to introduce a mapping
function ¢ able to transform a multidimensional network in
a monodimensional one, trying to keep as much informa-
tion as possible, and a function ¢’ which recovers multidi-
mensional information from monodimensional communities.
The logical workflow to solve MCD is then:

g&GC—D>C¢—/>C—>7,pﬁceC) (10)
where ¢ is a function that converts a multidimensional net-
work G to a monodimensional network G, CD is any al-
gorithm for community discovery on monodimensional net-
works, ¢’ is a function that, for each monodimensional com-
munity ¢, restores the multidimensional connections origi-
nally residing among the nodes of ¢ in G, thus returning
a set of multidimensional communities C, on which we are
then able to compute our evaluating functions v and p.

3.1 Three possible 4 mappings

There can be several different definitions for ¢, leading
to different monodimensional networks built from G. One
possible class of them can be designed by simply flattening
multidimensional edges to monodimensional ones, possibly
weighting the monodimensional edges by some functions of
the original multidimensional structure. In the following we
assume to use a weight-based class of ¢ functions, and we
define three different weighting strategies ¢.

The first we define is p and requires to weight the (u,v)
edge in G with 1 if there exists at least one dimension con-
necting u and v in G, or, in formula:

)1 if{3d:(u,v,d) € FE}
Huw =190  otherwise

(11)

(MCD). Given a multidimensional network
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In the remainder of the paper, we refer is as ¢,,. This flatten-
ing clearly looses most of the multidimensional information
residing in G, except the neighborhood: any two nodes con-
nected in G are also connected in G. One small improvement
would be counting the number of dimensions connecting any
two nodes u and v and using this as weight for the monodi-
mensional edge added. We call this weight v, which can be
defined as:

Vuw = {d: (u,v,d) € E}| (12)

and we refer to the ¢ built upon v as ¢,.

We now consider a slight modification of v that, instead
of taking into account only the connection between v and v,
also looks at their neighborhood, motivated by the intuition
that common neighbors will likely be in the same community
of u and v. We refer to this weight as n and define it as:

|Nu,l N Nv,l|

1 PR et MRk bt N
TN UN| -2

Nu,v = (13)
where N. ; is the set of neighbors in dimension d for a node.
This is actually a multidimensional version of the clustering
coefficient, and, according to the intuition behind it, should
be able to better reflect the strength of the ties. We call ¢,
the weight based on 1. Note that there could be many other
possible weighting strategy, as well as other different class of
¢ relying on different principles.However, to keep complexity
low, and for sake of simplicity, in this paper we only examine
the results obtained by using the three ¢ defined above.

3.2 The choice for cD

Any algorithm for community discovery can be used in our
workflow, with one caveat: it should be able to handle edge
weights. In our experiments, we present the results obtained
by using an algorithm based on random walk [4], one based
on label propagation [5] and one based of the fast greedy
optimization of the modularity [1] as choices for possible
monodimensional community discoverer. In our analysis we
show how the choice among these three does not significantly
affect the resulting distribution of v and p.

3.3 Returning multidimensional communities

To get back restoring the original multidimensional infor-
mation for each connected pair we only have to restore its
original multidimensional connectivity in G.

4. EXPERIMENTS

Our network was extracted from the Internet Movie Database

(http://www.imdb.com). It is a collaboration network of
years 2000-2009, where each node represents a person in-
volved in a movie, and two persons are connected if they
where involved in the same movie. We considered each year
as a dimension of the network. Basic statistics of these net-
works are reported in Table 1. The framework, available for
download®, was implemented using R and igraph.

For the C'D step, we chose three different algorithms: on
based on random walk [4] (WT), one based on label propa-
gation [5] (LP) and one based of the fast greedy optimiza-
tion of the modularity [1] (FGM). WT and FGM returns
the complete dendrograms of the communities, thus chose
to take the cut maximizing the modularity as the best cut.

"http://kdd.isti.cnr.it/MCDF



[Network] V] [E] [P D]
|IMDb |28042 1291625 1131951

k N F#cc %GC %SE]
10 92.12 80.73 28 99.77 79.13'

Table 1: Basic statistics: £ is the average degree,
N the average num. of neighbors, #cc the num. of
connected components, %GC the ratio of nodes in
the giant component, %SE is computed as |P|/|E)|

.
10" 10°

Figure 2: The cumulative distributions for v and p
in IMDb (color image).

LP WT FGM
Network | ¢ | ¢| Q| el Q | Il Q
qB,L 87 0.415 860 0.494 64 0.442
IMDb v 124 0.483 847 0.541 66 0.536
¢v,7 148 0.460 823 0.507 63 0.530

Table 2: Communities (|C|) and modularity (Q)

4.1 Quantitative Evaluation

Purpose of this section is to give a quantitative analysis of
the results obtained driven by the following questions: Q1
Can we evaluate the performances of the different choices
of ¢ and CD? Q2 How does the choice of ¢ and CD af-
fect the distribution of v and p over the communities? Q3
What is the best choice of ¢ and CD parameters? In or-
der to answer Q1, we looked at the values of the modular-
ity measure (as defined in [1]), computed on the resulting
set of communities C. This measure gives a value between
—1 and 1, indicating how “good” nodes where partitioned
into groups. The higher the value of modularity, the higher
the partitioning reflects the division in the community of
the graph that maximizes intra-community edges and min-
imizes inter-community edges. In Table 2 we report the
modularity values, highlighting in bold, for each algorithm,
which ¢ produced the highest value. We are interested in
seeing whether a specific combination of ¢ and C'D tends to
produce higher scores. We notice that according best pre-
processor was ¢, , as it produces the best partition with
each algorithm. In order to answer Q2, we analyzed the
distribution of v and p for the output of each ¢-algorithm
combination. These distributions are depicted in Figure 2.
The distributions are generally overlapping and there is not
a universally dominant combination. This confirms that our
workflow does not significantly affect the distribution of the
two measures. In addition, the information in Figure 2 may
be used in conjunction with modularity in order to achieve
richer knowledge about the results. Modularity, in fact, in-
dicates how well the network is partitioned, and v and/or p
distributions characterize the multidimensional structure of
the partitioning. One last consideration can be done look-
ing at Table 2: there is no strong prevalence of one choice of
parameters over the others. The same happens also for the
distributions of v and p. This suggest that the best answer
for Q3 really depends on the final analysis of the network:
the application scenario, the semantic of the dimensions and
the time budget for running the experiments should drive
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Figure 3: A few interesting communities found, with
their v or p.

the analyst towards the proper choice of the two parameters
for our framework.

4.2 Analysis of Interesting Communities

We extracted two examples of communities with a rela-
tively high (among the top 10%) score of v and one with a
relatively high p. We found one community with high com-
plementarity, which was too large to be easily represented
(more than 150 nodes). In Figure 3(a) we give a representa-
tion of it: each node is a clique within the community. Each
group was found to represent a different documentary (ti-
tles provided as node labels) dedicated to a few important
persons related to the cinema. The community has high
complementarity because the personalities in a single doc-
umentary (such as Alfred Hitchcock or Jean-Luc Godard)
are connected only by the year of release of the documen-
tary itself, because they were not in activity in our sample
of years, therefore not bound together by their own works.
The connections between the documentaries are due to some
movie stars present in both films. Redundancy in IMDb is
able to identify large teams with continuous collaborations
along many years. One group following this rule is com-
posed by some masters of the Iranian cinema (Figure 3(b)),
like Makhmalbaf and Panahi, both prominent directors in
the Cannes and Venice Festivals.

5.  CONCLUSIONS AND FUTURE WORK

We have addressed the problem of finding and character-
izing communities in multidimensinal networks. We have
given a possible definition of multidimensional community
and then provided two different measures aimed at quan-
tify and disambiguate the density of the community found,
and devised a framework for our problem. Our results ob-
tained on real world networks are encouraging, and provided
a basis for future research on this direction. We plan to in-
vestigate the possibility of creating a multidimensional com-
munity discovery algorithm driven by v and p scores.
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