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Two Competing Approaches
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Rule extraction through graph Rule extraction through graph Rule extraction through graph
mining is feasible, as different mining is performant, as theav- mining is informative, as it goes
thresholds of support and confi-  erage accuracy is higher than the beyond a three-user interaction

dence generate manageable sets  one obtained with social balance and it yields different trust dy-
of rules. triangle classification. namics for different datasets.




