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Abstract

Hubs are highly connected nodes within a network. In complex network analysis, hubs have been widely studied, and
are at the basis of many tasks, such as web search and epidemic outbreak detection. In reality, networks are often
multidimensional, i.e., there can exist multiple connections between any pair of nodes.In this setting, the concept of
hub depends on the multiple dimensions of the network, whose interplay becomes crucial for the connectedness of a
node. In this paper, we characterize multidimensional hubs. We consider the multidimensional generalization of the
degree and introduce a new class of measures, that we call Dimension Relevance, aimed at analyzing the importance of
different dimensions for the hubbiness of a node. We assess the meaningfulness of our measures by comparing them on
real networks and null models, then we study the interplay among dimensions and their effect on node connectivity. Our
findings show that: (i) multidimensional hubs do exist and their characterization yields interesting insights, and (ii) it is
possible to detect the most influential dimensions that cause the different hub behaviors. We demonstrate the usefulness
of multidimensional analysis in three real world domains: detection of ambiguous query terms in a word-word query log

network, outlier detection in a social network, and temporal analysis of behaviors in a co-authorship network.
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1. Introduction

Complex networks have been receiving increasing at-
tention by the scientific community. One reason for this
is the availability of massive network data from diverse do-
mains, and the outbreak of innovative analytical paradigms,
which pose relations and links among entities, or people, at
the center of investigation [12, 13, 21, 1, 27, 5, 2, 28]. One
topic of research in this direction has received considerable
attention from the scientific community: finding and ana-
lyzing hubs, i.e., nodes with a large number of neighboring
nodes.

Most of the networks studied so far are monodimen-
sional: there is only one interaction among nodes. In
this setting the concept of hub has been widely studied,
and is at the basis of many important applications, rang-
ing from analysis of the structure of the Internet to web
searches, from peer-to-peer network analysis to social net-
works, from Viral Marketing to analysis of the Blogo-
sphere, from outbreaks of epidemics to metabolic network
analysis [4, 14, 1, 13, 11, 24, 15, 17].

However, in the real world, networks are often mul-
tidimesional, i.e there might be multiple connections be-
tween any pair of nodes. Therefore, multidimensional anal-
ysis is needed to distinguish among different kinds of in-
teractions, or equivalently to look at interactions from dif-
ferent perspectives. This is analog to multidimensional
analysis in OLAP systems and data warehouses, where
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data are aggregated along various dimensions. In analogy,
we refer to different interactions between two entities as
dimensions.

Dimensions in network data can be either explicit or
implicit. In the first case the dimensions directly reflect
the various interactions in reality; in the second case, the
dimensions are defined by the analyst to reflect different in-
teresting qualities of the interactions, that can be inferred
from the available data. This is exactly the distinction
studied in [18], where the authors deal with the problem
of community discovery. In their paper, our conception
of multidimensional network is referred as multislice, net-
works with explicit dimensions are named multiplex, and
the temporal information is used to derive dimensions for
the network.

Examples of networks with explicit dimensions are so-
cial networks where interactions represent communications
by different means: email, instant messaging services and
so on. An example of network with implicit dimensions is
a co-authorship network where an interaction between two
authors represents the time when the collaboration took
place.

In this paper, we deal with the following question:
how does the concept of hub change in multidimensional
network analysis? Figure 1 depicts a possible hub in a
monodimensional network (Figure 1la) and three possible
hubs in a multidimensional setting (Figure 1b-d). The four
cases show different hub configurations: while the first is
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Figure 1: Example of different multidimensional hubs.

simply a node with a high degree (thus connectivity), and
nothing else can really be said about it purely on the basis
of this figure, the other three represent a different scenario.
We can see that the hub in Figure 1b is connected by two
dimensions (solid line) to all the other nodes, while this
is not true for the other hubs. Neither the degree of the
node nor the number of neighbors that could be reached
from it would give us any more information. The third
and fourth case give other two possible scenarios, where, if
we take into account each dimension individually, the node
in the center has a low degree (and number of neighbors);
however, the co-existence of many dimensions where this
happens makes it possible to consider the central node as
a hub (this is particularly true for the hub in Figure 1d).

Can the four hubs be considered in the same way, or
can we say something specific about each one? In a multi-
dimensional setting, are all hubs equivalent to each other?
Can we say something about the importance of a specific
dimension for the connectivity of a node? Finally, can
we reason on hubs’ behavior by looking at how relevant a
dimension is for the connectivity of the hubs?

As these questions suggest, analyzing hubs in multidi-
mensional networks basically introduces a new degree of
freedom: the set of dimensions of the network. However,
we believe that the current analytical tools are not able
to capture the interplay among these dimensions. New
measures need to be introduced to overcome this problem.

In this paper, we address the problem of finding and
analyzing multidimensional hubs in real networks by defin-
ing suitable analytical tools. This work is only a part of
our research work on multidimensional network analysis,
for which we posed the bases in a previous work [6], by
defining a new model and new measures for multidimen-
sional networks.

The contribution of this paper can be summarized as
follows. First, we introduce multidimensional networks
and we show some real world examples of them. Next,
we define the problem of finding and analyzing multidi-
mensional hubs in such networks. Further, we introduce
two analytical tools needed in order to perform such an
analysis. The first is a multidimensional generalization of
the degree, namely the number of neighbors of a node,
while the second is a brand new class of measures, which
we call Dimension Relevance. The aim of these measures
is to exploit the additional degree of freedom that multi-
dimensionality adds to the problem of analyzing hubs in
networks. Finally, we show a multidimensional hub anal-
ysis case study on the proposed real world networks, sup-
porting the meaningfulness of the problem introduced, the
effectiveness of the measures defined, and a few practical

applications intended to demonstrate the power of our ap-
proach.

The most important results of this work are: (1) we
show that multidimensional hubs exist, and can be found
and analyzed using our introduced measures of interplay
of the different dimensions; (2) we show that the charac-
terization of multidimensional hubs highlights interesting
analytical properties, and (3) thanks to our metrics, we
discover and quantify the importance of every single di-
mension with respect to the others, generally unknown a
priori.

The remainder of the paper is organized as follows:
Section 2 introduces the multidimensional network setting
and gives a formal definition of the problem under inves-
tigation; Section 3 introduces the various measures for
multidimensional hub analysis and a possible character-
ization of multidimensional hubs; in Section 4 we present
the results about the analysis of the proposed measures by
applying them on real networks; Section 5 presents three
examples of characterization of hubs in real networks; Sec-
tion 6 overviews previous related work; finally in Section 7
we conclude our work with recommendations for possible
future research.

2. Multidimensional Networks in Reality

The term network denotes a structure that is made up
of a set of entities and connections among them. A net-
work with connections of different kinds is called a multi-
dimensional network; we use the term dimension, instead
of link type or kind, to emphasize that each link dimen-
sion corresponds to a different perspective of the network
connectivity structure.

Most real life networks are intrinsically multidimen-
sional, and some of their properties may be lost if the dif-
ferent dimensions are not taken into account [3]. In other
cases, it is natural derive multiple link dimensions from the
available data to the end of analyzing some phenomena.

2.1. Three Real-World Examples

Three examples of real-world multidimensional networks,
highly heterogeneous and representative of the possible
different kinds of networks in the real world, which we
acquired and prepared as the subject of our study, are the
following:

Flickr!'. This dataset comes from the well known photo
sharing service, and was obtained by crawling the
data via the available APIs. We extracted both im-
plicit and explicit dimensions of the social network
represented in this data. For each picture, we ex-
tracted the list of all the users related to it and
from these users we completed the social network
by adding edges if two users commented, tagged or
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set the same picture as favorite, or if they had each
other as a contact. From roughly 1.3M users we
obtained slightly more than 900M edges, distributed
on the above mentioned four dimensions. The result-
ing network is a person-person network, where each
dimension is one of the “Friendship”, “Tag”, “Fa-
vorites”, or “Comment”, representing if the users are
friends, tagged the same picture, marked the same
picture as favorite, or commented on the same pic-
ture. A small extract of this network is represented
in Figure 2(a).

DBLP?. This dataset comes from the popular biblio-
graphic database. We constructed a co-authorship
network of authors (nodes) connected by an edge
if they wrote a paper together. We used years as
dimensions, and any pair of authors was connected
in a specific dimension if they wrote at least one pa-
per together in the corresponding year. We obtained
roughly 600k nodes connected by 2.6M edges, dis-
tributed over 65 dimensions. The resulting network
is a person-person network, where each dimension
is on the years from 1938 to 2008 (with some gaps
at the beginning), indicating whether the users had
a collaboration in the corresponding year. A small
extract of this network is represented in Figure 2(b).

Query Log®. This network was constructed from a
query-log of approximately 20 millions web-search
queries submitted by 650,000 users over a period
of time, and was described in [20]. Each record
of this dataset stores an anonymous user ID, the
query terms, the date and hour of the query, the
rank position of the result visited by the user on each
record and the host portion of the URL of the vis-
ited result. From this dataset, we extracted a word-
word network of query terms, consisting of roughly
200k words (nodes), after removing stop-words. We
connected two words if they appeared together in a
query, producing roughly 2M edges. Dimensions are
defined as the rank positions of the results, grouped
into six almost equi-populated bins: “Binl” for rank
1, “Bin2” for ranks 2-3, “Bin3” for ranks 4-6, “Bin4”
for ranks 7-10, “Bind” for ranks 11-58, “Bin6” for
ranks 59-500. Hence two words appeared together in
a query for which the user clicked on a resulting url
ranked #4 will produce a link in dimension “Bin3”
between the two words. The result is a word-word
network, for which we give a small extract in Figure
2(c).

Table 1 summarizes the main properties of these networks
(see caption). As we see, while in Flickr the dimensions
are explicit, in QueryLog and DBLP we have to define our
concept of dimension, thus in this case the dimensions are
implicit.

2http://www.informatik.uni-trier.de/~ley/db
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Dataset Dimension #Nodes #Edges k Density
Bin 1 138,992 1,104,581 15.894 1.14e *
Bin 2 108,439 878,136 16.195  1.49¢~*
Bin 3 89,418 708,897 15.855  1.77¢~*
QueryLog | Bin 4 75,846 583,774 15.393  2.02¢~*
Bin 5 42,951 253,976 11.826 2.75¢ ¢
Bin 6 12,236 36,456 5.958  4.87e¢"*
Global 184,760 3,565,820 38.599  3.48¢°
Friendship 984,919 48,723,010 98.938  1.00e 7
Comment 930,526 198,309,709 426.231  4.58¢~*
Flickr Favorite 380,992 674,488,956 3540.698  9.29¢°
Tag 91,690 715,447 15.605  1.70e~*
Global 1,186,895 922,237,122 1554.033 3.27¢*
DBLP Global 582,201 2,648,845 9.09 7.8le ©

Table 1: Summary of the datasets used. Column 1 specifies the
dataset; Column 2 the dimension into account; Columns 3 and 4 the
number of nodes and edges; Column 5 the average degree; Column
6 the density computed as number of edges out of number of total
possible edges in all the dimensions

2.2. Finding and Characterizing Hubs

Most interesting network analytical concepts, both at
the global and at the local level, such as connectivity, cen-
trality, diameter, etc., developed for standard, monodi-
mensional networks, come under a different light when
seen in the multidimensional setting. At the global level,
for example, the connectivity of the whole network changes
if we see a single dimension as a separate network, with
respect to the network formed by all the edges in the entire
set of dimensions. Also at the local level, it is possible to
analyze many other examples. One such example is the
concept of a hub, i.e., a node with a very high degree,
substantially higher than the average degree of all nodes.
When considering a multidimensional network, such sim-
ple concept becomes subtler and multifaceted: first, the
definition of a multidimensional hub is parametric with
respect to a set of dimensions and secondly, the relevance
of a node depends on the interplay among the different di-
mensions and their impact on the connectivity of the node.
Here, a multidimensional hub is a node with high connec-
tivity in the sub-network obtained by considering only the
edges from some specified dimensions (later in the paper
we give a formal definition). As evidence of how subtle the
characterization of a multidimensional hub is, we found in
all our real-world networks that the population of hubs
obtained while neglecting the dimensions, differs substan-
tially from that of hubs obtained taking dimensions into
account (see Table 2 and its discussion in Section 4.2):
some (sometimes many) monodimensional hubs are not
multidimensional hubs, and vice versa (see Section 4.2 for
further analysis of this phenomenon).

This led us to conclude that analyzing hubs in multidi-
mensional networks is not a trivial extension of the stan-
dard case. In other words, it requires techniques and mea-
sures of node connectivity across different dimensions, able
to highlight the interplay among (sets of) dimensions and
their impact on node connectivity. Therefore, the problem
that we dealt with in this paper can be defined as follows:

Definition 1 (Problem Definition). Given a large mul-
tidimensional network, find and characterize the multidi-
mensional hubs.
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Figure 2: Small extracts of the three real multidimensional networks.

In the remainder of this paper, we introduce a few ana-
lytical measures of node connectivity in multidimensional
networks, as a collection of basic tools for hub analytics.
We then show in our three case studies how such analytics
can be successfully applied to discover sets of multidimen-
sional hubs which highlight interesting phenomena in the
associated networks. Our aim is to gain two kinds of in-
sights into the multidimensional network under analysis:
(a) the interplay of dimensions and their effect on node
connectivity, and (b) the characterization of a group of
hubs and the understanding of their role within the net-
work.

Note that, while we are interested in hubbiness, i.e.
degree centrality, the same kind of approach can be used
to analyze the multidimensional versions of other concepts
of centrality: betweenness, closeness, and eigenvector cen-
trality are a few examples. We leave for future research
the study of those scenarios.

3. Connectivity Measures for Multidimensional
Networks

We use a multigraph to model a multidimensional net-
works and its properties. For the sake of simplicity, in
our model we only consider undirected multigraphs and
since we do not consider node labels, hereafter we use
edge-labeled undirected multigraphs, denoted by a triple
G = (V,E,L) where: V is a set of nodes; L is a set of
labels; E is a set of labeled edges, i.e. the set of triples
(u,v,l) where u,v € V are nodes and I € L is a label.
Also, we use the term dimension to indicate label, and we
say that a node belongs to or appears in a given dimension
d if there is at least one edge labeled with d adjacent to
it. We also say that an edge belongs to or appears in a
dimension d if its label is d. We assume that given a pair
of nodes u,v € V and a label [ € L only one edge (u,v,1)
may exist. Thus, each pair of nodes in G can be connected
by at most |L| possible edges. Hereafter P(L) denotes the
power set of L.

Since the concept of hub is related to the connectivity
of a node in the network, to define it properly, we first need
to extend the concept of connectivity for multidimensional
networks.

Now, we define the Neighbors and the Dimension Rel-
evance class of measures. Neighbors is an extension of the

degree in the multidimensional setting. Dimension Rele-
vance is a new class of measures, meaningful only in multi-
dimensional networks. Moreover, we give their interpreta-
tion and we show a toy example illustrating their behavior
for a few nodes.

8.1. Neighbors

In classical graph theory the Degree of a node refers
to the connections of a node in a network: it is defined,
in fact, as the number of edges adjacent to a node. In
a simple graph, each edge is the sole connection to an
adjacent node. In multidimensional networks the degree
of a node (i.e., the number of the connections of that node
in a network) and the number of nodes adjacent to it are
no longer related, since there may be more than one edge
between any two nodes. For instance, in Figure 1, all nodes
have four neighbors, but they have a very different degree,
especially in every single dimension.

In order to capture this difference, we define a measure
concerning the neighbors of a node.

Definition 2 (Neighbors). Let v € V and D C L be a
node and a set of dimensions of a network G = (V, E, L),
respectively. The function Neighbors : V x P(L) — N is
defined as

Neighbors(v, D) = |NeighborSet(v, D)|

where NeighborSet(v,D) = {u € V | I(u,v,d) € E A
d € D}. This function computes the number of all the
nodes directly reachable from node v by edges labeled with
dimensions belonging to D. O

Note that, in the monodimensional case, the value of
this measure corresponds to the degree. It is easy to see
that Neighbors(v, D) < Degree(v), but we can also easily

say something about the ratio %;S(%D). When the

number of neighbors is small, but each one is connected by
many edges to v, we have low values for this ratio, which
means that the set of dimensions is somehow redundant
with respect to the connectivity of that node. This is the
case of node 2 in the toy example illustrated in Figure 3.
On the opposite extreme, the two measures coincide, and
this ratio is equal to 1, which means that each dimension
in which v has a neighbor is necessary (and not redundant)



for the connectivity of that node: removing any of these di-
mensions would disconnect (directly) that node from some
of its neighbors. This is the case of node 5 in Figure 3.

We also define a variant of the Neighbors function,
which takes into account only the adjacent nodes that are
connected by edges belonging only to a given set of dimen-
sions.

Definition 3 (Neighborsxor). Let v € V and D C L
be a node and a set of dimensions of a network G =
(V, E, L), respectively. The function Neighborsxor : V X
P(L) — N is defined as
Neighborsxor(v,D) =

HueV|3deD: (u,v,d) € EANBd ¢ D: (u,v,d) € E}
It computes the number of neighboring nodes connected by
edges belonging only to dimensions in D. O

3.2. Dimension Relevance

As already mentioned, while performing hub analysis
it is important to understand how important a particular
dimension is over the others for the connectivity of a node,
i.e. what happens to the connectivity of the node if we
remove that dimension. In order to answer these questions,
we define the new concept of Dimension Relevance.

Definition 4 (Dimension Relevance). Let v € V and
d € L be a node and a dimensions of a network G =
(V,E, L), respectively. The function DimRelevance : V x
L — [0,1] is defined as

Neighb d
DimRelevance(v,d) = W

and computes the ratio between the neighbors of a node v
connected by edges labeled with a specific dimension d and
the total number of its neighbors. O

Clearly, the above function can be defined taking into
account a set of dimensions instead of a single dimension.
In other words, we can generalize Definition 4 as follows:

Definition 5 (Dimension Relevance). Let v € V and
D C L be a node and a set of dimensions of a network
G = (V, E, L), respectively. The function DimRelevance :
V x P(L) — [0,1] is defined as

Neighbors(v, D)
Neighbors(v, L)

and computes the ratio between the meighbors of a node v
connected by edges belonging to a specific set of dimensions
in D and the total number of its neighbors. g

DimRelevance(v, D) =

Note that, the case of a single dimension (Definition
4) is a particular case of that in Definition 5, where the
set of dimensions D contains only the dimension d. In
the remaining of the paper we define the others measures
considering a set of dimensions.

However, in a multidimensional setting, this measure
may still not cover important information about the con-
nectivity of a node. Figure 1 shows three nodes (a, b and ¢)

with a high dimension relevance for the dimension repre-
sented by a solid line. In the first two cases the dimension
relevance is equal to one, but the complete set of con-
nections they present is different: if we remove the solid
line dimension the node a will be completely disconnected
while the node b can still reach all its neighbors. To cap-
ture these possible different cases we introduce a variant
of this metric.

Definition 6 (Dimension Relevance XOR). Let v €
V and D C L be a node and a set of dimensions of a net-
work G = (V, E, L), respectively.

The function DimRelevancexor : V x P(L) —
fined as

[0,1] de-

Neighborsxor(v, D)
Neighbors(v, L)

computes the fraction of neighbors directly reachable from

node v following edges belonging only to dimensions D. [

DimRelevancexogr(v, D) =

We can easily calculate the above metric in the exam-

ples in Figure 1. For the node a there is no difference with
the Dimension Relevance (Definition 5): all its neighbors
are only reachable by solid edges. In node b we have the
opposite situation: all its neighbors are reachable by solid
edges, but we always have an alternative edge. So the
Dimension Relevance XOR of the solid line dimension is
equal to zero.
In the following, we want to capture the intuitive interme-
diate value, i.e. the number of neighbors reachable through
a dimension, taking into account all the possible alterna-
tives.

Definition 7 (Weighted Dimension Relevance).

Let v € V and d € L be a node and a dimension of a
network G = (V, E, L), respectively.

The function DimRelevancey : V x P(L) —
Weighted Dimension Relevance, is defined as

[0,1], called

Nuvd
Zue NeighborSet(v,D) ny,

Neighbors(v, L)

where: Nyyq 15 the number of dimensions in which there is
an edge between two nodes u and v and that belong to D;
Ny 18 the number of dimensions in which there is an edge
between two nodes u and v. O

DimRelevancew (v, D) =

Hereafter we occasionally use DR to stand for Dimen-
sional Relevance. In our toy example in Figure 3, the nodes
6, 7 and 8 have five neighbors, quite a large number in this
example, but their values of Dimension Relevance are very
different since they are connected in different dimensions.

The Dimension Relevance XOR behaves in a different
way. A value equal to zero does not necessary imply that
the node is not connected to a particular dimension. It rep-
resents a situation where the node has no neighbor that
can be reached exclusively through that particular dimen-
sion. So it is possible to reach it by alternative ways. In
Figure 3, node 3 is an example of this, when considering
the dashed line dimension.



) DR DRw DRxon
Id | Deg | Neigh | ;1 dim2 dim3 dim4 | diml  dim2 dim3 dimd | diml  dim2 dim3  dim4
1 7 4 0.250 0.500 0.500 0.500 | 0.062 0.312 0.312 0.312 | 0.000 0.250 0.250 0.250
9| 12 | 3 1000 1.000 1.000 1.000 | 0.250 0.250 0.250 0.250 | 0.000 0.000 0.000 0.000
31 7 | 4 1020 0250 0750 0250|0312 0062 0562 0.062 | 0.250 0.000 0500 0.000
4] 7 | 4 0750 0250 0250 0500|0562 0.062 0.062 0.312 | 0.500 0.000 0.000 0.250
50 6 | 6 |0333 0166 0333 0.166 | 0333 0.166 0.333 0.166 | 0.333 0.166 0.333 0.166
6| 6 | 5 10200 0000 0200 0800|0200 0000 0.100 0.700 | 0.200 0.000 0.000 0.600
70 6 | 5 1000 0000 0200 0.000]0.900 0000 000 0.000 | 0.800 0.000 0.000 0.000
$| 7 | 5 10200 0000 1.000 0200|0100 0000 0.800 0.100 | 0.000 0.000 0.600 0.000

Figure 3: Toy example and computed measures. Lines: solid = dim 1, dashed = dim 2, dotted = dim 3, dash-dotted = dim 4.

The Weighted Dimension Relevance takes into account
both the situations modeled by the previous two defini-
tions. Low values of DimRelevancey, for a particular set
of dimensions D are typical of nodes that have a large num-
ber of alternative dimensions through which they can reach
their neighbors. High values, on the other hand, mean that
there are fewer alternatives. Our example shows the case
of node 4 when considering the solid line dimension: its
Weighted Dimension Relevance is clearly the highest, al-
though the dot-dashed line dimension has a high value of
Dimension Relevance (as in Definition 5).

The table in Figure 3 shows the values of all the above
metrics for all the dimensions computed in the toy exam-
ple. Each value is computed taking into account a single
dimension. In our analysis we will apply our metrics on a
single dimension to better highlight and show the use, the
effects and the power of proposed measures.

The following theorem states the relations among the
above three definitions.

Theorem 1. Letv € V and D C L be a node and a set of
dimensions in a multidimensional network G = (V,E, L),
respectively. It holds:

DimRelevancexor(v, D) < DimRelevancey (v, D)

DimRelevancew (v, D) < DimRelevance(v, D).
|

Proof In order to prove this theorem it is sufficient to
show that

some edges labeled with dimensions in D and some edges
labeled with dimensions that do not belong to D then in A
the node u contributes with a value equal to 0 while in B
it contributes with a value greater than 0. Thus, we have
that A < B.

Now, we prove the inequality (2). If node v is connected
to a neighbor u only labeled with dimensions in D then in
both the formula B and C it contributes with 1; if they
are connected only by edges labeled with dimensions that
do not belong to D then in A and B u contributes with
0; lastly, if they are connected by some edges labeled with
dimensions that do not belong to D and some edges labeled
with dimensions in D then in B the node u contributes
with a value equal to "4 < 1 (d € D) while in C it

contributes with 1. Thus,u we have that B <. O

3.8. Measuring the Hubbiness

We now formally define the concept of multidimen-
sional hub and a possible characterization for it.

Definition 8 (Multidimensional Hub). Letv be a node
and D a set of dimensions in a multidimensional network.

Given a threshold § the node v is a multidimensional hub
in the set D iff Neighbors(v, D) > 6.

In general, the threshold 0 depends on the specific net-
work, although there are empirical rules in the literature
to determine it (one example is the classical 80-20 rule
[22]). This is why hereafter we omit this threshold, saying
only that a hub is a node with a high number of neighbors.

; Nuvd
Neighborsxor(v, D) < ZHGN@ighbm‘Set(va) Ny 1) At this point, one question arises: can we give a for-
and mal characterization of multidimensional hubs? The set
of measures to assess the relevance of a dimension for a
. Nywvd < >
2 ueNeighborSet(v, D) nas = N eighbor (v, D) (2) given node allows to characterize some kind of hubs. In

as DimRelevancexor(v, D), DimRelevancew (v, D) and
DimRelevance(v, D) have the same denominator. Let:

A = Neighborsxor(v, D)

Nyvd
n.

B = ZuGNeighborSet(v,D)

C = Neighbors(v, D).
First of all, we prove the inequality (1). If node v is con-
nected to a neighbor u only by edges labeled with dimen-
sions in D then in both A and B, u contributes with 1; if
they are connected only by edges labeled with dimensions
that do not belong to D then in both the formulas, A and
B, u contributes with 0; lastly, if they are connected by

uv

particular, by combining the two following notions of mul-
tidimensional hub and relevance of a dimension for a node
we are able to identify, within a set of multidimensional
hubs, those for which a specific dimension d is relevant
(Definition 9) or irrelevant (Definition 10).

Definition 9 (D-supported Hub). Let v and D be a
node and a set of dimensions in a multidimensional net-
work, respectively. The node v is D-supported if v is a
multidimensional hub with respect to a set of dimensions
D', such that D C D', and R(v,D) > €, with R € {DR,
DRxor, DRw}



Definition 10 (D-unsupported Hub). Let v and D be
a node and a set of dimensions in a multidimensional net-
work, respectively. The node v is D-unsupported if v is
a multidimensional hub with respect to a set of dimen-
sions D', such that D C D', and R(v,D) < ¢, with R €
{DR, DRxor, DRw}

As one can see, as the difference between the two re-
sides only in the direction of the inequality, each of the two
concepts acts as nemesis for the other one, hence we use
this term hereafter to refer to hubs that play the opposite
role of other ones.

There are two caveats in the above definitions. First,
the definitions are generic for any set of dimensions D,
where D might even contain only a single dimension. When
analyzing real networks, a specific target of analysis might
be to find the set of d-supported hubs for one single spe-
cific dimension d. For an analogous reason, D’ might be
any set of dimensions included in L, in which v is a hub.
In our examples in Section 5 we take D’ = L, as we want
to take into account all the available dimensions.

Second, the choice among the various DRs allows to
find D-supported (D-unsupported) hubs with very differ-
ent multidimensional characteristics. The choice is ad-hoc,
and only depends on the analysis that one might want to
perform, hence there is no better choice among the oth-
ers. For example, by choosing the DRxogr, and looking
for the d-unsupported hubs for a specific dimension d, we
are looking for hubs that would be hubs even without the
connections provided by dimension d.

Note that the above characterization in a network whose
set of dimensions L would contain only a single dimension
d, would not make any sense: all the involved sets (L, D,
and D’) would contain only d, thus (1) all the values for
the DRs would be 1, making the distinction between D-
supported and D-unsupported vain, and (2) there would
be no distinction among the three DRs, making thus the
characterization leading to only one possible type of hubs,
which is, obviously, the traditional concept of monodimen-
sional hub.

Given all the above, building a multidimensional anal-
ysis aimed at extracting and characterizing a multidimen-
sional hub is relatively easy: the analyst defines the de-
sired analysis, translates it in terms of a filter on the val-
ues of Dimension Relevance and then selects, among the
nodes with high number of neighbors, the ones satisfying
the filter, leading to D-supported or D-unsupported hubs,
according to the most appropriate choice of DR and pa-
rameters.

Example 1 (Airline Network). Without looking at the
complete structure of the multidimensional network of air-
lines (each airline company taken as a dimension), we se-
lected two FEuropean multidimensional hubs (> 100 con-
nected cities): Dublin and Madrid. We found that the
Ryanair airline has a DR of 0.54 for Dublin and 0.27 for
Madrid, while it has a DRxor of 0.31 for the former, and

Algorithm 1 M HA — Multidimensional HubAnalysis

Require: V,E, D C L

Ensure: statistics for all nodes in V, w.r.t D

: for alle € E do

increase N eighbors(srcNode(e), trgtNode(e))

for all d € dimensions(e) do
increase N eighbors(srcNode(e), trgtNode(e), d)
updateD Ry (srcNode(e), trgtNode(e), d)
if number of dimensions of e is 1 then

increaseNeighborsxor(srcNode(e),trgtNode(e),d)

end if
updateDRxor(srcNode(e), trgtNode(e), d)

10:  end for

11: end for

0.09 for the latter. This means that, while the Ryanair’s
importance seems to be double for Dublin w.r.t Madrid in
terms of connected cities, its importance as sole connection
is more than triple. Dublin is then a Ryanair-supported
hub, according to both DR and DRxoR.

8.4. Implementation and Complexity

Algorithm 1 is the pseudo-code for computing our mea-
sures. Assuming the list of edges to be sorted (this can be
done once for all), each measure can be computed by a sin-
gle scan. In line 2 we update, edge by edge, the Neighbors.
In lines 3-10 we scan the dimensions in which each edge
appears: in lines 5 and 6 we update the Neighbors with re-
spect to each dimension d, and the DimensionRelevanceyy .
Then we check whether we have to update Neighborsxonr.
Then in line 9 we update the DimensionRelevancexoRr.

Under the assumption of having a sorted edge list, for
each node we keep in main memory the following informa-
tion: an integer for the number of neighbors, an integer
for each dimension representing the degree of that node in
that dimension, two floats for each dimension representing
the Neighbor XOR and a temporary value for comput-
ing the Weighted Dimension Relevance. As soon as the
source/destination pair changes, we can release the tem-
porary variables.Thus the space complexity is O(|N|x |L|),
that can be considered as O(|N|), since usually |L| < |N]|.
Given that each edge is scanned exactly once, the time
complexity for computing the complete set of measures is
O(|E|). Sorting the edges can be done once for all when
preparing the network, thus we ignore the additional com-
plexity of O(|E| x log(|E|)).

4. Evaluation of Multidimensional Measures

We now want to answer the following:

Q1. Are the presented multidimensional measures able to
make important latent knowledge emerge from the
data?

Q2. Would it be possible to extract (part of) this knowl-
edge with non-multidimensional techniques with the
same degree of complexity?



Q3. What kind of knowledge would the measures make
emerge on null models?

We address Q1 in Section 4.1, Q2 in Section 4.2, and Q3
in Section 4.3. In order to do so, we analyzed hubs in
the three different real-world networks presented in Sec-
tion 2: Flickr, QueryLog and DBLP. All the experiments
were conducted on a PC with a Core2 Duo processor at
2GHz with 3GB of RAM, running Linux Ubuntu9.10. The
binaries of the Java classes and the data used in the paper
are available online 4 . In line with linear time complex-
ity, the running times were less than one hour for Flickr,
and less than two minutes for QueryLog and DBLP. The
memory occupation was less than 1 GB for Flickr and less
than 500MB for QueryLog and DBLP.

4.1. Multidimensional Measures on Real Networks

Here, we want to study the power of our multidimen-
sional tools in letting latent knowledge emerge from the
data. Figures 4(a)-(c) show, for the three datasets, the
cumulative neighbor distributions in log-log scale. Con-
sider the curve corresponding to the global network, i.e.
the distribution of neighbors computed over all the dimen-
sions. The DBLP network shows a behavior similar to the
“the rich gets richer”, with very different cut-offs, while
the other networks behave differently. The figures show
that the behavior of this measure resembles the one of the
degree in the monodimensional setting, even without be-
ing completely similar. To support this, in Figure 4(a)-(c)
we report also the cumulative neighbor distribution per
dimension (which, in turn, is the degree per dimension) of
the three networks, and we compare them with the global
neighbors distribution. For DBLP, we chose only six rep-
resentative dimensions out of the original 65.

In Figure 4(d)-(1) we report the distributions of Di-
mension Relevance in the three dataset. The strong differ-
ences among the three networks highlight the presence, in
the real world, of networks with different multidimensional
structure.

We then believe that the three DRs are able to make
the interplay among the dimensions emerge from the data,
extracting the knowledge at the center of investigation in
Q1, that we now consider successfully answered.

4.2. Finding multidimensional hubs with monodimensional
techniques

In order to answer the question “can we extract multi-
dimensional hubs with monodimensional techniques?”, the
first question to answer is “are multidimensional hub nec-
essarily monodimensional and vice versa?”

Table 2 answers this for our three networks. For each
dataset we extracted the top 20% monodimensional hubs
(nodes with a high degree in one dimension) and the 20%
multidimensional hubs (only taking into account the total

4http://kdd.isti.cnr.it/MHA

Network Multi — Mono Mono — Multi
QueryLog 75.69% 99.85%
Flickr 70.87% 46.43%
DBLP 31.08% 70.87%

Table 2: Relationship between mono and multidimensional hubbi-
ness of a node

number of neighbors considering all the dimensions). The
columns of the table report the probability of being a mul-
tidimensional hub given that a node is a monodimensional
hub and vice versa. We can see from DBLP and Flickr
dataset that being a monodimensional hub does not entail
being a multidimensional hub and vice versa.

However, one can argue that finding 46% of multidi-
mensional hubs by extracting monodimensional hubs could
be sufficient. To prove that this is not true, we show
that two multidimensional hubs may look very different
when their multidimensional connectivity is examined, or,
in other words: the fact that two hubs are multidimen-
sional does not entail that these two nodes have the same
importance and show the same behavior. This is based
on the intuition that, in the multidimensional setting, two
different multidimensional hubs may exhibit a different in-
terplay among the dimensions in which they appear. In
order to show this, we report in Figure 4(m-o0) the cumu-
lative standard deviation of the three measures for each
hub on the different dimensions. The high values of the
standard deviation obtained highlight a high diversity of
relevance for each of the dimensions in which a node is
connected. All the networks show high values of these
metrics for a large fraction of nodes. As a result, two mul-
tidimensional hubs may look very differently when their
multidimensional connectivity is examined.

Consider Figure 5. Here we report the size of the over-
lap among two sets of hubs: the ones extracted with our
filter defined in Section 4.1 and the ones having only a
high monodimensional degree. Note that the set of hubs
extracted in our analysis here is a subset of the total set
of multidimensional hubs. Therefore the set of nodes used
for Figure 5 is higly differs from the one used for Table
2. The overlap between the two sets is computed after in-
creasing the number of hubs extracted from the network.
We started extracting the 0.25% of high degree nodes and
we ended extracting the 2.5% top hubs. The plot high-
lights two different things. The first is related to Flickr
and QueryLog datasets. In these datasets it is fairly im-
possible to extract the desired set of hubs, answering to
our precise analytical questions expressed in Section 4.1,
without any multidimensional information. In order to
extract less than 1% of the nodes with the desired multi-
dimensional properties, the analyst must extract the 2.5%
of the network’s hubs. This means, for example, that in
order to obtain 7 hubs in the QueryLog dataset the an-
alyst has to extract 5000 hubs and for 200 Flickr hubs
this number raises up to 30000. Furthermore there is no
way to distinguish the desired hubs from the other ones.
The DBLP dataset behaves differently. In DBLP we can
obtain almost all (99%) the interesting hubs defined ac-
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Figure 5: The overlap ratio between monodimensional and multidi-
mensional hubs

cording to our analytical questions by extracting the 1.5%
of the hubs of the network (9000 nodes). However, this
ratio decreases as we enlarge the set of hubs extracted.
This happens because 8774 is the exact number of nodes
in DBLP having the desired characteristics. Thus they
are not hubs: we are dealing with all the nodes, regard-
less their connectivity. For this analysis it is a coincidence
that all these nodes are also monodimensional hubs, but,
as one can expect, this is not always true.

In conclusion, we have provided a motivated answer
for question Q2, that makes it clear the need for these
multidimensional techniques.

4.8. Evaluating the measures on null models

One question left open is: what kind of knowledge
would the DRs extract in null models such as a random
multidimensional network? Therefore, would their distri-
butions on random networks look similar to the original
ones? This point is crucial and would show how the mea-
sures are effectively telling something about real, non ran-
dom, phenomena. Purpose of this section is to study the
three DRs under this perspective by means of evaluation of
them on different synthetic networks used as null models.

We built four different multidimensional network gen-
erators, each with different characteristics, starting from
a simple random generator, towards a generator that tries
to preserve a global property of the original network that
we might see as correlated with our measures, namely
the Jaccard correlation index computed among the sets of
edges corresponding to the dimensions. For each model,
we present its characteristics and the evaluation of the DRs
on the QueryLog and the DBLP networks.

Note that, while our measures can be computed with
low time complexity, executing the generators might re-
quire quadratic (or even more) space and/or time and does
not scale well. For this reason, while we can efficiently han-
dle large networks with our measures, we only computed
the null models on the smallest ones.

4.3.1. Random

We created a generator of random multidimensional
networks, which takes in input the number of dimensions
to generate, and the number of nodes and edges to put into
each dimension. We fed the generator with these statistics
computed on the real QueryLog and DBLP networks.
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Figure 6: Random: QueryLog (left column) and DBLP (right)

Figure 6 shows the cumulative distribution of the DR
(top row), DRy (central row), and DRxor (bottom row),
computed on the QueryLog-like (left column) and DBLP-
like (right column) networks. As we expected, the distri-
butions of the DRs looks much different with respect to
the original ones, and the relationships among the dimen-
sions residing within the original networks look destroyed
when compared to the original distributions (see Figure
4(d-f) for QueryLog and Figure 4(j-1) for DBLP). Note
that the distributions per dimension do not overlap, as we
might expect for a random graph, given that we are pre-
serving the number of nodes and edges per dimension, and
this causes the DRs computed for each dimension to take
different values.

The distributions prove that the knowledge extracted
by the DRs on random networks is much different with
respect to the one deriving from real data, thus making
the knowledge extractable with this analysis on real data
non random, supporting then the meaningfulness of the
measures.

We then wanted to see in the next generators what we
can add to the null model in order to make the distribution
look closer.

4.8.2. Preferential attachment

For the second generator, we took in input the same
parameter as the previous one, but we built every dimen-
sion by evolving it following the preferential attachment
model [4], i.e., after a bootstrap consisting of a clique of
three nodes, we iteratively added a node attaching it to a
random node with a probability directly proportional to
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Figure 7: Preferential attachment: QueryLog (left column) and

DBLP (right column)

its degree. Figure 7 reports the distributions of the DRs
computed on the two networks. As we can see, we are not
adding any significant information to the model compared
to the random graph.

4.8.8. Shuffle

The previous two generators are however producing
random combinations of links, which is, obviously, destroy-
ing most of the original information. In this generator,
instead, we keep, dimension by dimension, all the charac-
teristics of the original graph, except the relations among
the dimensions. More clearly, we split the graph by di-
mensions, and we re-merge them in a random way, shuf-
fling then all the node id correspondences among different
dimensions. In this way, except destroying the interplay
among dimensions, we are keeping most of the character-
istics of the original networks.

As one can see in Figure 8 we had results similar to the
previous ones. At this point we might think that there is a
strong relationship between the global correlation among
dimensions, and the values of the DRs, that are, however,
local measures.

4.8.4. Jaccard

In order to validate the above hypothesis, we built a
generator that preserves only the Jaccard correlation co-
efficient among the dimensions, computed on the sets of
edges of each pair of dimensions of the real network in in-
put. To be more clear, for each pair of dimensions x and
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and E, are the sets of edges belonging to dimensions x
and y respectively, and generated a network preserving all
these values. This was achieved by storing the set of mul-
tiedges connecting two nodes, and by using them to build
the synthetic graph. The aim of this generator is to pre-
serve the global interplay residing among the dimensions.

As Figure 9 shows, for QueryLog we are now a little
closer to the original distribution of the pure DR, while
this does not hold for the other two measures, nor for
DBLP. This is not surprising, as, by its definition, the
capability of the pure DR to capture the interplay among
the dimensions is weaker with respect to the other two.
In particular, the exclusivity of the DRxog is a stronger
concept, which is harder to preserve by this generator.

A different consideration must be done to explain the
results in DBLP. Looking at figures 4(j-1), we see how the
distributions of the three measures are changed in these
synthetic networks, in contrast to what happens to Query-
Log. However, even though for sake of simplicity we plot
only six of them, DBLP has a total of 65 dimensions, thus
making it more difficult to preserve the interplay among
all of them, even with a little perturbation of the real net-
work. This effect is weaker in QueryLog, that has a total
of six dimensions.

y in the original network, we computed where E,,

4.3.5. Conclusions on null models

Based on our experience matured on null models, we
can claim that the DRs are indeed capturing the intrinsic,
real, relationships among the dimensions. The phenom-
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Figure 9: Jaccard: QueryLog (left column) and DBLP (column)

ena caught by these measures are not random, and cannot
be easily reproducible with a generator of low complexity.
Further investigation might lead to a generator capable
of a more sophisticate synthesizing of the values taken by
the measures, but at the eventual cost of additional com-
plexity. In addition, it appears clear that the DRs work
at the local level and, while it is relatively easy to build
a generator based on global properties, the definition of a
model preserving the global distribution of a local measure
is non-trivial.

This adds to the previous section, where we have showed
that it is not possible to measure the same relationships
by means of only monodimensional techniques. Based on
these two sections then, we believe there is strong moti-
vation behind the use of such measures, whose semantic
meaning is unique and justifies their need.

In conclusion, we believe to have successfully answered
Q3 by means of the above analysis on null models.

5. Hub Characterization in Real Networks

In this section we show how, by exploiting the charac-
teristics and the semantic of the real networks described
in Section 2 and of their dimensions, we are able to assign
a name to some of the possible characterizations of the
hubs. We then find hubs that are interesting w.r.t three
simple analytical examples. In our networks, we found
convenient to use the dimension relevances as a powerful
filter for characterizing a narrow set of hubs, due to the
distributions of these measures. In particular, in Query-
Log, only 100 hubs have a Weighted Dimension Relevance
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lower than 0.25 or higher than 0.5. The vast majority of
hubs lays on a very narrow interval of values, thus becom-
ing clearly irrelevant for the analysis, more focused on the
outliers. This holds also for the other two networks.

The following three examples are meant to be only a
sample of possible real-life applications in which our tech-
niques may be helpful. In the future, we plan to expand the
direction of finding interesting real-life problems in mul-
tidimensional network analysis, in which our techniques
might be used as a support for a more complete under-
standing of real phenomena. Just to give an example of
this, we will very briefly present also the nemesis (see Sec-
tion 3) of our extracted hubs, i.e. hubs with very similar
number of neighbors, but extracted with a specular filter
on the Dimension Relevance. This will help to better char-
acterize the extracted hubs and will give a further idea of
the degree of freedom of the analyst in using these analyt-
ical tools.

In the following, we consider hubs the nodes with a high
number of neighbors taking into account the complete set
of available dimensions, i.e., in definitions 9 and 10, we put
D' =1L.

5.1. Detection of Ambiguous Query Terms

In the QueryLog network we applied our measures to
find ambiguous query terms. In order to do so, we se-
lected the query terms that are: 1) used in conjunction
with many other terms (high number of neighbors) and 2)
generally connected with their neighbors in queries that
led to low rank results (low Weighted Dimension Rele-
vance for the first rank bin, i.e. the neighboring terms are
often found in queries that do not provide good results for
the user).

Then, we are saying that being an ambiguous query
term translates into being a D-irrelevant hub, where D
= {“Binl”} and the proper dimension relevance measure
is the DRyy. Note this choice: minimizing the DRxor
of dimension “Binl” would have selected terms that gen-
erally do not produce good results at all, while the pure
DR would not have specified the interplay with the other
dimensions.

Given the hubs extracted with the above characteriza-
tion, we wanted to go further, trying to explain why the
terms led also to good results in a few cases. We then con-
sidered the small communities of words surrounding the
hubs extracted, where we looked for the reasons for a very
good or very bad query result. We selected the neighbors
with the highest Dimension Relevance for dimension 1, to
see why, with a generally bad query term, sometimes we
find good results.

A possible example found to satisfy these criteria is
the word “Wearing” (a simplified view of its neighborhood
is depicted in Figure 10a). This term shows here poor
semantics, which needs a disambiguation. Moreover, the
clusters surrounding this word are very clear: words in
either cluster are not really expected to be in the other
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Figure 10: Some of the multidimensional hubs extracted

one. The first group of queries was apparently generated
by users looking for information about AIDS and how to
prevent it. In the second cluster we see people interested
in Elle MacPherson’s dressing habits.

The nemesis of this hub, i.e. words which always lead
to good results with a very high number of other words (D-
supported hub, where D = {“Binl”} using DRy ), are the
words “Wikipedia” and “Amazon”: a possible explanation
for this is that a user looking either for many different
words in an encyclopedia or for products in a store is likely
to find the first results to be the best matches.

5.2. Outlier Detection

Here we analyzed hubs in a totally different context, i.e.
a network of social connections. The aim of this analysis
is to find users that are connected to the network mainly
via the Friendship dimension, thus giving less importance
to the Comment, Favorite and Tag features of the social
network.

Thus, in this analysis we focused on the Dimension
Relevance XOR and considered the head of its distribution
for the Friendship dimension: high values of this metric
mean that the node is connected with its neighborhood
exclusively via Friendship links.

Hence, in this analysis, we can characterize as outliers
the D-relevant hubs, where D={"Friendship”} and the di-
mension relevance is the DRxoR.

We wanted to go further, by identifying two subcat-
egories of our outliers: professionals and spammers, for
which Figure 10b gives a possible representation. The first
can be identified due to their high number of ingoing edges
and the low number of outgoing ones (to do this, we ex-
tracted a posteriori the direction of ever edge, distinguish
then between ingoing and outgoing ones). This behavior
is classic in social networks: if a person has an interesting
profile, many people will ask for friendship. We found two
instances of this kind of profile®-6. On the other hand, the
owner of an interesting profile could not be interested in
having so many friends. The opposite observation can be

Shttp://www.flickr.com/photos/38687875@N00
Shttp://www.flickr.com/photos/20532904@N00
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made for spammers: they can be detected by a high num-
ber of outgoing edges but no one is interested in returning
the friendship link to a spammer (we found two examples
of these hubs”8).

As nemesis (D-unsupported hubs, where D={ ”Friend-
ship”} and using DRxog), we found three profiles? 10:11,
All these profile presented, at the time of the download
of the network, a very high number of neighbors and no
one exclusively through the Friendship dimension: at the
moment of writing this paper, all the profiles are closed.
Therefore, the nemesis of both spammers and profession-
als are the quitters (and this is really interesting in the
perspective of the service providers).

5.8. Analyzing Temporal Behaviors

In this section, we go beyond the theory presented so
far. Consider definitions 9 and 10. It is clear that real
networks might express rich semantic, and that even pow-
erful tools and characterizations as defined so far could not
cover the complete set of analyses that one might want to
perform. In this perspective, we want to show how, by
substituting the usage of the DRs in the two mentioned
definitions with any of the possible aggregates computed
on their values, it is possible to expand the class of phe-
nomena that can be studied with our tools.

In this context, an interesting application of our ap-
proach is to analyze the temporal behavior of multidimen-
sional hubs on evolving networks. In this section we show
the results obtained on DBLP, whose dimensions are the
years of publications. The specific object of our analysis is
to find authors of scientific papers who tend to change the
authors with whom they collaborate possibly every year.
Note that we are not focusing on just new collaborations,
but we want also to see the old ones to disappear. In order
to do so, we found hubs v maximizing the number of di-
mensions d for which DRxor(v,d) > 0 (maximizing this
value means maximizing the number of years in which the

Thttp://www.flickr.com/photos/10539246@N05
8http://www.flickr.com/photos/23941584@N08
Shttp://www.flickr.com/photos/21700048@N04
Ohttp:/ /www.flickr.com/photos/22045276@N00
Mhttp:/ /www.flickr.com/photos/53654438@QN00



author had collaborations that took place only in a specific
year and not in others).

In this scenario then, we call then dynamic researchers
the D-relevant hubs v, where D = L (where L contains all
the years) and, instead of the any of the simple DRs, we
maximize |{d: DRxor(v,d) > 0}|.

Figure 10c reports two representations of hubs extracted
in this way: the hubs behaving as H1 and the ones be-
having as H2. To be more precise, a deeper classification
among them might be performed by looking also at the
standard deviation of the DRxor computed in all the di-
mensions. The example H2 in the right of that Figure, in
fact, represents a hub minimizing the standard deviation.
H1 hubs are collaborators in high effort publications such
as books (such as Maxine D. Brown or Steffen Schulze-
Kremer); while H2 hubs are authors who tend work with
many different people, rarely keeping these collaborations
alive, such as Ming Xu or Jakob Nielsen.

Finally, if we minimize the DRxogr(v,d) we find the
nemesis of these hubs. The list of these hubs includes
many relevant names in Computer Science: Allan Borodin,
Richard M. Karp, Robert Endre Tarjan, Godfried T. Tou-
ssaint, and Jeffrey D. Ullman fall in this category.

6. Related work

In this section we briefly review some research related
to our analysis from two different points of view: the anal-
ysis of hubs, and possible models and measures for multi-
dimensional networks.

Scale-free networks, i.e. networks with the degree dis-
tribution following a power law, have been studied for
many years. The first study introducing the term “scale-
free” was [4], where the authors discovered that the struc-
ture of the Web shows the presence of a few highly con-
nected nodes, the hubs, and many nodes with a low de-
gree. Other papers studied the same concept and tried
to capture the “importance” of a node in a network: [14]
is a well known example. Since then, many papers have
considered scale-free networks in several different areas of
research. In [8], the authors analyzed the spread of viruses
in real networks, showing that the best nodes to immunize
in order to prevent the spread are not necessarily hubs.
In social networks, many studies have analyzed the power
of highly connected and influential nodes from different
points of view: [11, 24, 7] are just a few, describing how
having highly connected nodes affects the social behavior
of the networks. An interesting study on in citation and
collaboration networks is presented in [29], where the au-
thors use heterogeneous networks, which can be considered
very similar to our multidimensional setting. In commu-
nication networks, the authors of [1] showed how to make
use of hubs in peer-to-peer networks for fast and efficient
searches. In relation to hubs in networks it is impossible
not to mention previous approaches like PageRank [19]
or HITS [14]. However, there are substantial differences
with our setting that an experimental comparison would
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not make much sense of. First, we are analyzing mul-
tidimensional networks, while both of these studies were
proposed in the monodimensional setting. Secondly, al-
though our approach could be extended in order to deal
with directed edges, in this paper we handle undirected
networks. Finally, our measures are local to the hub, and
do not consider any kind of hubbiness inherited from the
neighbors.

As we can see, all the previous methods disregard the
possibility of enhancing their analysis with the power of a
multidimensional investigation, which can be extended in
order to consider this more complex scenario.

Nevertheless, in the last couple of years, a few studies
have been proposed in order to capture the natural mul-
tiplicity of relationships. Some research focuses on spe-
cific multidimensional social networks, such as communi-
cation networks among people. In one of these papers
[26], the aim was not the analysis of hubs but the multi-
dimensional formulation of machine learning tasks on so-
cial network. Given a network and a set of latent social
dimensions the authors were able to determine how new
entities will behave in these dimensions. Another interest-
ing paper treating multidimensional networks is [9], which
introduces the graph OLAP, a multidimensional view of
graph data. The paper defines informational and topolog-
ical dimensions over a graph, which correspond simply to
different observations of the same graph and its different
hierarchical views.

Two more papers deal with the analysis of multidimen-
sional network [25, 16]. In both cases, the authors analyze
networks with “positive” and “negative” links among on-
line communities. The authors in [25] analyze the degree
distributions of the various dimensions, which are scale-
free structures, highlighting the need for analytical tools
for the multidimensional study of hubs. In [16], the au-
thors focus on link prediction in multidimensional net-
works.

Other studies focus on the analysis of multi-relational
networks aimed at capturing the variety of relationships
between different entities [10, 23]. Most of these works,
however, only consider the possibility for nodes to be con-
nected via different kinds of relationships, while the pres-
ence of multiple connections at the same time is mostly
disregarded.

In summary, a definition of new analytical measures is
lacking, and the interplay among different dimensions has
not been investigated in any way. In our previous work [6]
we tried to overcome to this, by defining a model and a
full framework for multidimensional network analysis.

7. Conclusions

In this paper, we have addressed the problem of iden-
tifying and characterizing multidimensional hubs in real
world networks by defining suitable analytical tools.

We applied our scalable methodology to large real net-
works and showed that such hubs do exist and they can



be found and studied by using our measures of interplay
of the different dimensions. Moreover, our measures allow
to discover and quantify the importance of every single
dimension above the others.

While pursuing the research illustrated in this paper,
we learned that analyzing multidimensional networks is
an interesting research direction, which opens a variety
of new questions and requires the definition of new an-
alytical tool, such as the dimensional relevance measure
introduced here; we are currently investigating a compre-
hensive repertoire of multidimensional network measures,
including distance, centrality, clustering and so on: [6] is a
technical report describing the current state of our broader
framework for multidimensional network analysis.

In fact, many other questions on multidimensional net-
works remain unanswered, and call for further research; we
mention two such lines briefly here.

First, we did not consider, in our approach, the possi-
ble structure or semantics of the specific set of dimensions
under analysis: each different dimension is a distinct cat-
egorical value, and used as such in the multidimensional
measures; however, such dimension values can be mean-
ingfully sorted (as, e.g., in the QueryLog network, where
dimensions are associated to quality levels) or may have a
temporal or spatial semantics (as, e.g., in the DBLP net-
work, where dimensions are associated to years). How can
our measures be extended to fully exploit this additional
structure?

Second, it would be interesting to devise a generalized
query framework for the discovery and analysis of hubs in
multidimensional networks, based on the proposed mea-
sures, capable of supporting the analyist in expressing the
desired queries (e.g., top-k hubs according to some speci-
fied hubbiness and relevance constraints), in finding appro-
priate parameters and thresholds for the involved measures
on the basis of the available network data.

Finally, as mentioned in Section 2.2, we plan to extend
our study on other kinds of centrality, such as betweeness,
closeness or eigenvector centrality.
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