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Abstract. One classic problem definition in social network analysis is
the study of diffusion in networks, which enables us to tackle problems
like favoring the adoption of positive technologies. Most of the attention
has been turned to how to maximize the number of influenced nodes, but
this approach misses the fact that different scenarios imply different dif-
fusion dynamics, only slightly related to maximizing the number of nodes
involved. In this paper we measure three different dimensions of social
prominence: the Width, i.e. the ratio of neighbors influenced by a node;
the Depth, i.e. the degrees of separation from a node to the nodes perceiv-
ing its prominence; and the Strength, i.e. the intensity of the prominence
of a node. By defining a procedure to extract prominent users in complex
networks, we detect associations between the three dimensions of social
prominence and classical network statistics. We validate our results on a
social network extracted from the Last.Fm music platform.

1 Introduction

One classic problem in social network analysis is understanding diffusion effects
in networks. Modeling diffusion processes on complex networks enables us to
tackle problems like preventing epidemic outbreaks [6] or favoring the adop-
tion of new technologies or behaviors by designing an effective word-of-mouth
communication strategy. In our paper, we are focused on the social prominence
aspect of the diffusion problem in networks.

In the setting of favoring social influence, most of the attention of researchers
has been put on how to maximize the number of nodes subject to the spread-
ing process. This is done by choosing appropriate seeds in critical parts of the
network, such that their likelihood of being prominent users, i.e. nodes that are
active on an innovation before all the other nodes, is maximum, to possibly
achieve larger cascades. While larger cascades are obviously part of the over-
all aim, we argue that it is not the unique dimension of this problem. Three
other dimensions are relevant: the width, the depth and the strength of the so-
cial prominence of any given node in a network. The width of a node is being
prominent for its immediate neighbors; the depth is its ability to be the root of
long cascades; the strength is being the root of an intense activity.



Real-world scenarios focus on specific diffusion patterns requiring a multidi-
mensional understanding of the prominence mechanics at play, along the three
mentioned dimensions. Some examples are: (i) an analyst needs information from
the personal acquaintances of a subject, the important aspect is that many sub-
ject’s direct connections respond, ignoring people two steps away or more; (ii) a
person wants to find another person with a given object, the important aspect
is that some people are able to pass her message through a chain pointing to the
target; (iii) an artist wants to influence people in a social network to her art, the
important aspect is that some people are influenced above the threshold that
will make them aware of the art. In (i) we want a broad diffusion in the first de-
gree of separation. In (ii) we require a targeted diffusion similar to a Depth First
Search. In (iii) there is the need of a high-intensity diffusion. Different scenarios
may require any combination of the three.

In this paper, we make use of three measures to capture the characteristics
of these three scenarios: the Width, Depth and Strength of social prominence.
The Width measures the ratio of the neighbors of a node that follows the node’s
actions. The Depth measures how many degrees of separation there are between
a node and the other nodes that followed its actions. The Strength measures the
intensity of the action performed by some nodes after the leader.

We study what the relations are between these three measures to understand
if we are capturing three orthogonal dimensions of social prominence. We also
study the relations between the Width, Depth and Strength measures and differ-
ent node properties, with the aim of predicting the diffusion patterns of different
events, given the characteristics of the nodes that lead their diffusion.

To validate our concepts, we constructed a social network from the music
platform Last.Fm3, along with the data about how many times and when each
user listens to a song performed by a given artist. We detect who are the promi-
nent users for each artist, i.e. the users who start listening to an artist before
any of their neighbors. We calculate for each prominent user its Width, Depth
and Strength, along with its network statistics such as the degree and the be-
tweenness centrality, looking for associations between them. We then create a
case study to understand what are the different dynamics in the spread of artists
belonging to different music genres, by using the artists’ tags.

To sum up, the contributions of our paper are: (i) a proof that social diffusion
indeed follows at least these three dimensions, which are uncorrelated or anti-
correlated; (ii) the discovery of some significant associations between the three
dimensions of social prominence and some traditional network measures; (iii)
the ability to predict the patterns of diffusion of particular events by looking at
the characteristics of the leaders spreading them.

2 Related Work

In the last decade, there has been growing interest in the studies of diffusion pro-
cesses. Two phenomena are tightly linked to the concept of diffusion: the spread
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of biological [6] or computer [17] viruses, and the spread of ideas and innovation
through social networks, the so-called “social contagion” [2], [8]. In both cases,
the patterns through which the spreading takes place are determined not just
by the properties of the pathogen/idea, but also by the network structures of
the population it is affecting.

Some models have been defined to understand the contagion dynamics: the
SIR [11], SIS and SIRS [16] models. The idea behind them is that each individual
transits between some stages in the life cycle of a disease: from Susceptible (S) to
Infected (I), and from Infected to either Recovered (R) or again Susceptible. The
availability of Big Data conveying information about human interactions and
movements encouraged the production of more accurate data-driven epidemic
models. For example, [6] takes into account the spatio-temporal dimension. In
[17], authors study the spreading patterns of a mobile virus outbreak.

Christakis and Fowler studied the role of social prominence in the spread
of obesity [4], smoking [5] and happiness [9]. Their results suggest that these
health conditions may exhibit some amount of “contagion” in a social sense:
although the dynamics of diffusion are different from the biological virus case,
they nonetheless can spread through the social network.

3 Leader Detection

Each diffusion process has its starting points. Any idea, disease or trend is firstly
adopted by particular kinds of actors. Such actors are not like every other actor:
they have an increased sensibility and they are the first to perform an action in
a given social context. We call such actors prominent users, or leaders, because
they are able to anticipate how other actors will behave. Given a graph, several
interesting problems arise regarding how information spreads over its topology:
can we identify the leaders? Can we characterize them? What kind of knowledge
should we expect to extract from their analysis?

Our approach aims to detect leaders through the analysis of two correlated
entities: the topology of the social graph and the set of actions performed by the
actors (nodes). When discussing the roles of those entities, we refer respectively
to the following definitions:

Definition 1 (Social Graph). A social graph G is composed by a set of actors
(nodes) V connected by their social relationships (edges) E. Each edge e ∈ E is
defined as a couple (u, v) with u, v ∈ V and, where not otherwise specified, has
to be considered undirected. With Γ (u) we identify the neighbor set of a node u.

Definition 2 (Action). An action au,ψ = (w, t) defines the adoption by an
actor u ∈ V , at a certain time t, of a specific object ψ with a weight w ∈ R. The
set of all the actions of nodes belonging to a social graph G will be identified by
A, while the object set will be called Ψ .

We identify with Gψ = (Vψ, Eψ), where Vψ ⊂ V and Eψ ⊂ E, the induced
subgraph on G representing respectively the set of all the actors that have per-
formed an action on ψ, and the edges connecting them. We depict an example
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Fig. 1: Toy Example. On the left the social graph G and action set A, where
x, y ∈ Ψ are the objects of the actions; in the center the induced subgraph for
the action x; on the right the diffusion tree for x. In red we highlighted the leader
(root) for the given tree.

of the social graph and the set of actions in Figure 1 (left), where the induced
subgraph for the object x is highlighted with a dashed line. In the Figure, a1,x
refers to the user 1 performing the action x; and a1,x = (1, 0) means that user 1
performed x one time, starting at the timestep 0.

Given the nature of a diffusion process, we would expect that each leader
will be prominent among its neighbors, being the root of a cascade event that
follows some rigid temporal constraints. Our constraint is that a node u precedes
a neighbor v iff given tu,ψ ∈ au,ψ and tv,ψ ∈ av,ψ is verified that tv,ψ > tu,ψ and
tv,ψ−tu,ψ ≤ δ. Here, δ is a temporal resolution parameter that limits the cascade
effect: if tv,ψ − tu,ψ > δ, we say that v executed action av,ψ independently from
u, as u’s prominence interval is over.

We transform each undirected subgraph Gψ in a directed one imposing that
the source node of an edge must have performed its action before the target
node. After that, each edge (u, v) will be labeled with min(tu,ψ, tv,ψ) to identify
when the diffusion started going from one node to the other. The directed version
of Gψ represent all the possible diffusion paths that connect leaders with their
“tribes” (Figure 1 (center) an example for the object x ∈ Ψ).

From now on, for a given object ψ, we will refer to the corresponding leader
set as Lψ: when no action is specified the set L will be used to describe the
union of all the Lψ for the graph G. To be defined a leader an actor should not
have any incoming edges in Gψ. This is because a prominent user cannot act
after another user (they are, in their surroundings, innovators), and is a direct
consequence to the adoption of a directed graph to express diffusion patterns.
Given this definition, for each directed connected component Cψ ⊂ Gψ multiple
nodes can belong to Lψ.

Realistically, a leader may be influenced by exogenous events. This is not a
problem as we are not measuring a node’s influence, but a node’s prominence,
i.e. its propensity to act faster than others to any kind of exogenous and/or
endogenous influence. To study the path of diffusion given an action a and a
leader l we use a minimum diffusion tree:

Definition 3 (Leader’s Minimum Diffusion Tree). Given an action aψ, a
directed connected component Cψ and a leader l ∈ Lψ, the minimum diffusion



tree Tl,ψ ⊂ Cψ is the Minimum spanning tree (MST) having its root in l and
built minimizing the temporal label assigned at the edges.

An example of minimum diffusion tree for the node 1 and object x is shown
in Figure 1 (right). For each object, the diffusion process on a given network is
independent. Moreover, given temporal dependencies on its adoption (expressed
through actions a∗,ψ ∈ A), it is possible to identify the origin points of the
diffusion. The identified leaders will show different topological characteristic and
will be prominent in their surroundings in different ways: our aim is to classify
diffusion leaders characterizing some of their common traits.

4 Measures

To capture the three dimensions of social prominence we need three network
measures. We call these measures Width, the ratio of neighbors mirroring an
action after a node; Depth, how many degrees of separation are in between a
node and the most distant of the nodes mirroring its actions; and Strength, how
strongly nodes are mirroring a node’s action.

Given a leader, the Width aims to capture the direct impact of her actions
on her neighbors, i.e. the degree of importance that a leader has over her friends.

Definition 4 (Width). Let G be a social graph, ψ ∈ Ψ an object and l ∈ Lψ ⊂
V a leader: the function width : Lψ → [0, 1] is defined as:

width(l, ψ) =
|{u|u ∈ Γ (l) ∧ ∃au,ψ ∈ A}|

|Γ (l)|
(1)

The value returned is the ratio of all the neighbors that, after the action of
the leader, have adopted the same object.

The Depth measure evaluates how much a leader can be prominent among
other prominent leaders, which can be prominent on other leaders and so on.

Definition 5 (Depth). Let Tl,ψ be a minimum diffusion tree for a leader l ∈ Lψ
and a given object ψ ∈ Ψ : the function depth : Tl,ψ → N computes the length of
the maximal path from l to a node u ∈ Tl,ψ. The function depthavg : Tl,ψ → R
computes the average length of paths from l to any leaf of the tree.

The last proposed measure, the Strength, tries to capture quantitatively the
total weight of the adoption of an object after the leader’s action. A leader is
strongly prominent if the nodes among which she is prominent are very engaged
in adopting what she adopted. Direct prominence diminishes as new adopters be-
come more distant, in the network sense, from the original innovator. Therefore,
we decided to introduce a distance damping factor.

Definition 6 (Strength). Let Tl,ψ be a minimum diffusion tree for a leader
l ∈ Lψ and an object ψ ∈ Ψ ; 0 < β < 1 a damping factor: the function strength :
Tl,ψ × (0, 1)→ R is defined as:

strength(Tl,ψ, β) =
∑

i∈[0,depth(l)]

βiL(Tl,ψ, i) (2)



where L : Tl,ψ × N→ R is defined as:

L(Tl,ψ, i) =
∑

{u|u∈Tl,ψ∧distance(l,u)=i}

wu,ψ
wu

(3)

and represents the sum, over all the nodes u at distance i from l, of the ratio
between the weight of action ψ and the total weight of all the actions taken.

Given the example in Figure 1, what are the Width, Depth and Strength
values for the red node leader and the action x?

Width: from Figure 1(left) we see that Γ (1) = {2, 4, 7, 8}, i.e. 4 nodes. Given

that Γx(1) = {u|u ∈ Γ (1)∧∃au,x} = {2, 4}, we have width(1, x) = |Γx(1)|
|Γ (1)| = 0.5.

Depth: the leaves in Figure 1(rigth) are nodes 3, 4 and 6. Node 4 is a direct
neighbor of 1, while node 3 is two edges away. The longest chain is 1 → 2 →
5 → 6, therefore depth(T1,x) = 3. We can also calculate depthavg(T1,x), that is
the average path length in the tree from node 1 to all the leaves: 1+2+3

3 = 2.
Strength: we need to use the number of times each node performed action x.

We also set our damping faction β = 0.5. At the first degree we have nodes 2 and
4, that performed action x 2 and 4 times respectively; they also performed action
y 1 and 2 times respectively: their contribution is then β0× ( 2

2+1 + 4
4+2 ). Nodes

2 and 5 are at the second degree of separation as they never performed action y,
therefore they add: β1 × (1 + 1). Finally, at the third degree of separation, node
6 adds β2 × 6

6+6 . Wrapping up, strength(T1,x, 0.5) = 2.4583̄.

5 Experiments

In this section we present our data extracted from the music social media
Last.Fm. We use the data to characterize the Width, Depth and Strength mea-
sures, by searching for associations with network topology measures. Finally, we
analyze the prominence of different users for different musical genres.

5.1 Data

Last.Fm is an online social network platform, where people can share their own
music tastes and discover new artists and genres basing on what they, or their
friends, like. Users send data about their own listenings. For each song, a user can
express her preferences and add tags (e.g. genre of the song). Lastly, a user can
add friends (undirected connections, the friendship request must be confirmed)
and search her neighbors w.r.t. musical tastes. A user can see, in her homepage,
her friends’ activities. The co-presence of these characteristics makes Last.Fm
the ideal platform on which test our method, as it contains everything we need:
social connections that can convey social prominence, a measure of intensity
proportional to the number of listening of an artist, rich metadata attached to
each song/artist and an intrinsic temporal dimension of users’ actions.



Using Last.Fm APIs4, we obtained a sample of the UK user graph, exploring
the network with a breadth-first approach, up until the fifth degree of separation
from our seeds. For each user, we retrieved: (a) her connections, and (b) for each
week in the time window from Jan-10 to Dec-11, the number of single listenings
of a given artist (e.g. in the week between April 11,2010 and April 18,2010 the
user 1234 has listened 66 songs from the artist Metallica).
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Fig. 2: Log-binned distribution of the nodes’ degree. Log-binned distribution of
number of listeners per artist.

For each artist we have a list of tags, weighted with the number of users that
assigned the tag to the artist (e.g. Metallica has 4 tags: “metal” with counter
50670, “hard rock” with 23405, “punk” with 10500 and “adrenaline” with 670).
We split tags, associating the counter to each single word (in the last example:
(metal, 50670), (punk, 10500), (hard, 23405), (rock, 23405), (adrenaline, 670)),
then we filtered the words referring to a musical genre ((metal, 50670), (punk,
10500), (rock, 23405)). Finally, we assigned a musical genre to an artist iff the
survived tag with the greater counter had the relative rate ≥ 0.5 (in the example:
rmetal(Metallica) = 50670

50670+10500+23405 ' 0.6, so Metallica are definitely metal).
After the crawl and cleaning stages, we built our social graph G. In G each

node is a user and each edge is generated using the user’s friends in the social
media platform. The total amount of nodes is 75, 969, with 389, 639 edges con-
necting them. In Figure 2 (left) we depicted the log-binned degree distribution of
G, along with the best fit. Each action in the data is one user listening to an artist
w times in week t. In Figure 2 (right) we depicted the log-binned distribution of
the number of listeners per artist, along with the best fit.

Since we are interested in leaders, we need to focus only on new artists that
were previously not existent. If an artist was in activity before our observation
time window, there is no way to know if a user has listened to it before, therefore
nullifying our leader detection strategy. For this reason, we focus only on artists
whose first listening is recorded six months after the beginning of our observation
period. Each artist belongs to a music genre (coded in its tag) and we want to
use this information in Section 5.3. We decided to focus on music genres with
sufficient popularity, namely: dance, electronic, folk, jazz, metal, pop, punk, rap
and rock. A genre’s popularity is determined by having at least 10 artists with
at least 100 listeners. To sum up, we focus on the artists who appear for the first

4 http://www.last.fm/api/
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time after six months in our observation period, with at least 100 listeners and
belonging to one of the mentioned nine tags. The cardinality of our action set A
is 168, 216 actions, while the object set Ψ contains a total of 402 artists.

In our experimental settings, we set our damping factor β = 0.5 for the
calculation of the Strength measure. We also set δ = 3, meaning that if a user
listened to a particular artist three weeks or more after its neighbor then we do
not consider her neighbor to be prominent for her for that action.5

5.2 Characterization of the Measures

For each leader, besides Width, Depth and Strength, we calculated also the
Degree (number of edges connected to the node), the Clustering coefficient (ratio
of triangles over the possible triads centered on the node), the Neighbor Degree
(average degree of the neighbors of the node), the Betweenness (share of the
shortest paths that pass through the node) and Closeness Centrality (inverse
average distance between the node and all the other nodes of the network).

Width Strength Degree Clustering Neigh Deg Bet Centr Clo Centr
AVG Depth -0.03 -0.23 -0.08 0.05 -0.08 -0.02 -0.13
Width - 0.01 -0.31 0.13 0.05 -0.07 -0.59
Strength - - 0.02 -0.02 0.03 0.00 0.04
Degree - - - -0.16 -0.02 0.77 0.56
Clustering - - - - -0.05 -0.06 -0.32
Neigh Deg - - - - - -0.00 0.39
Bet Centr - - - - - - 0.22

Table 1: Pearson correlation coefficient ρ between Width, Depth, Strength and
other network statistics for our leaders.

In Table 1 we report the Pearson correlation coefficient ρ between the network
measures. We highlighted the correlations whose p-value was significant or whose
absolute value was strong enough to draw some conclusions. For the significance
of p-values, the traditional choice is to set the threshold at p < 0.01. However,
given our number of observations, we decided to be more restrictive, setting our
threshold at p < 0.0005. We also consider a ρ value significant if |ρ| > 0.1.

The Depth measure is associated with low Closeness Centrality. This means
that a deep prominence is associated to nodes at the margin of the network.
It is expected that nodes with high Closeness Centrality have also low Depth:
being central, they cannot generate long chains of diffusion. The eccentricity of
all the nodes of the network ranges from 6 to 10, meaning that some leaders
cannot have a Depth larger than 5. To make a fair comparison, we recalculate
the Depth value capping it at 5, meaning that any Depth value larger than 5 is
manually reduced to 5. Then, we recalculate the correlation ρ between the Depth
capped to 5 and the Closeness Centrality obtaining as result ρ = −0.1366, with
p < 0.0005. We can conclude that central nodes are not associated with deep
spread of their prominence in a social network.

5 To assure experiment repeatability, we made our cleaned dataset and our code avail-
able at the page http://www.michelecoscia.com/?page_id=606
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For the Width measure, the anti-correlation with the Degree is not meaning-
ful, as the Degree is in the denominator of Definition 4. However, we observe a
positive association with Clustering, i.e. nodes could be prominent in a tightly
connected community; and a negative association with Closeness Centrality, i.e.
central nodes could not spread a wide influence. Both associations could be ex-
plained with the negative correlation with Degree. Therefore, for both measures
we run a partial correlation, controlling for the Degree. In practice, we calcu-
late the correlation between Width and Clustering (or Closeness Centrality) by
keeping the Degree constant. Results are in Table 2: even if significant according
to the p-value, the relationship between Width and Clustering is very weak and
deserves further investigation. On the other hand, it is confirmed that central
nodes are also associated with low Width, regardless their degree.

Clustering Clo Centr
Partial ρ 0.087216 -0.536861

p-value 1.57× 10−14 0

Table 2: Partial correlation and p-value of Clustering and Closeness Centrality
with Width, controlling for Degree values.

From Table 1, we see that the Strength measure is not correlated with tradi-
tional network statistics. As a consequence, hubs associated with low Depth and
low Width, do not have necessarily high Strength, making their prominence in
a network questionable. Moreover, Strength appears to be negatively associated
with Depth, suggesting a trade-off between how deeply a node can be prominent
in a network and how strong this prominence is on the involved nodes.

The anti-correlation between the Strength and the Depth may be due to β:
from Definition 6 β decreases nodes’ contributions at each degree of separation
(i.e. at increasing Depths). As a consequence, nodes farther from the leader
contribute less to its Strength, i.e. the highest the Depth the smallest are the
contributions to the Strength. We recalculated the Strength values by setting
β = 1, therefore ignoring any damping factor and nullifying this effect. We
obtained as result ρ = −0.4168 and a significant p-value, therefore concluding
that β is not causing the anti-correlation between Depth and Strength.

To sum up, we summarize the associations as follows: (i) central nodes are
not necessarily prominent in a social network (low Width and Depth), a result
that confirms [3] and [1]; (ii) longer cascades (higher Depths) are associated with
a lower degree of engagement (lower Strengths), a phenomenon possibly related
to the role played by “weak ties”; (iii) be prominent among neighbors is probably
easier if the node is in a tightly connected community, but more evidences have
to be brought to reject the role played by the node’s degree.

5.3 Case Study

Here, we present a case study based on Last.Fm data. Our aim is to use our
Leader extraction technique and the proposed Width, Depth and Strength mea-
sures to characterize the spread of musical genres among the users of the service.
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Fig. 3: (a) The RCA scores of the presence of each tag in each cluster; (b) The
centroids of our clusters.

We recall that, as described in Section 5.1, the object set Ψ is composed by 402
artists, each one having a tag corresponding to her main music genre.

For each couple leader l and object ψ, we calculate Depth, Width and
Strength values; we compute the size of the Leader’s Minimum Diffusion Tree
(|Tl,ψ|); and we group together the objects with the same tag. To characterize
the typical values of Width, Depth and Strength for each tag we cannot use the
average or the median. This is because Strength and Width values are skewed,
and it is the combination of the three measures that really characterizes the
leaders. We cluster leaders using as features their Width, Depth and Strength
values. We used the Self-Organizing Map (SOM) method [13] because: (i) SOM
does not require to set the number of clusters k; (ii) k-means outperforms SOM
only if the number of resulting clusters is very small (less than 7) [14], but our
study of the best k to be used in k-means with the Sum of Squared Errors (SSE)
methodology resulted in a optimal number of clusters falling in a range between
9 and 13 (in fact, SOM returned 12 clusters); and (iii) SOM performs better if
the data points are contained in a warped space [12], which is our case.

In Table 3(a), we report a presence score for each tag in each cluster. There
are larger and smaller clusters and some tags attract more listeners than others.
To report just the share of leaders with a given tag in a given cluster is not
meaningful. We correct the ratio with the expected number of leaders with the
given tag in the cluster, a measure known as Revealed Comparative Advantage:

RCA(i, j) =
freqi,j
freqi,∗

/
freq∗,j
freq∗,∗

, where i is a tag, j is a cluster, freqi,j is the number

of leaders who spread an artist tagged with tag i that is present in cluster j. For
each cluster we highlighted the tag with the highest unexpected presence.

The centroids of the SOM are depicted in Figure 3(b): Depth on the x-
axis, Strength on the y-axis and the Width as the color (Strength and Width
are in log scale). We can identify the clusters characterized by the highest and
lowest Strength (9 and 4 respectively); by the highest and lowest Depth (2 and
9 respectively); and by the highest and lowest Width (11 and 1 respectively).
There are also clusters with relatively high combinations of two measures: cluster
10 with high Strength and Width or cluster 5 with high Depth and Width.

From Table 3(a) we obtain a description of what values of Width, Depth and
Strength are generally associated with each tag. For space constraints, we report



only a handful of them for the clusters with extreme values. Jazz dominates
clusters 1 (with the lowest Width) and 4 (with the lowest Strength): this fact
suggests that jazz is a genre for which it is not easy to be prominent.

Cluster 9, with the lowest Depth but the highest Strength, is dominated by
pop (that dominates also clusters 10 and 11, both with high Strength but low
Depth). As a result, we can conclude that prominent leaders for pop artists are
embedded in groups of users very engaged with the new artist. On the other
hand, it is unlikely that these users will be prominent among their friends too.

Finally, cluster 2 with the highest density has a large majority of punk lead-
ers. From this evidence, we can conclude that punk is a genre that can achieve
long cascades, exactly the opposite of the pop genre.

We move on to the topological characteristics of the leaders per tag. A caveat:
a leader is not bounded to be leader just for one object ψ, but she is free to
be prominent in many ψ. Thus, one leader can be counted in more than one
tag. To help understand the magnitude of the issue, we depicted in Figure 4 the
number of leaders influencing their neighbors for a given amount of actions (left)
and for a given amount of tags (right). The y axis is logarithmic. The typical
leader influences one neighbor for one artist. However, some leaders express their
leadership for 8 objects and 4 tags.
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Fig. 4: Distribution of number of objects (left) and of tags (right) per leader.

In Figure 5 we depict the log-binned distributions, for the leaders of each
tag, of four of the topological measures studied in Section 5.2: Degree, Closeness
Centrality, Clustering and Neighbor Degree. We omit Betweenness Centrality for
its very high correlation with Degree. Overall, there is no significant distinction
between the tags in the distributions of the topological features.

The most noticeable information is carried by the Degree distributions (Fig-
ure 5, top left). Each distribution appears very different from the overall degree
distribution (Figure 2 (left)). There are fewer leaders with low Degree than ex-
pected, therefore it appears that a high Degree increases the probability of being
a leader. On the other hand, we know that central hubs have on average lower
Depth and Width. As a consequence, it appears that the best leader candidates
are the nodes with an average degree, and from Figure 5 (top left) we see that
each tag has many leaders with a Degree between 10 and 100.
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Fig. 5: Distribution of leaders’ Degree (top left), Closeness Centrality (top right),
Clustering (bottom left) and Neighbor Degree (bottom right) per tag.

Using our leaders’ Minimum Diffusion Trees, we extract some patterns that
help us obtaining a complementary point of view over the leader prominence
for different music genres. We mine a graph dataset composed by all diffusion
trees Tl,ψ with the VF2 algorithm [7]. Suppose we are interested in counting how
frequent is the following star pattern: a leader influences three of its neighbors
in the diffusion trees of pop artists. In our data, we have 5, 043 diffusion trees
for pop artists, and 581 have at least four nodes. Since the VF2 algorithm found
the star pattern in 186 of these graphs, we say that it appears in 3.69% of the
trees, or in 32.01% of the trees that have enough nodes to contain it.

In Table 3 we report the results of mining three patterns of four nodes: i) the
star-like pattern described above; ii) a chain where each node is prominent for (at
least) one neighbor; iii) a split where the leader is prominent for a node, which
itself is prominent for two other neighbors. Two values are associated to each
pattern and tag pair: the relative overall frequency, and the relative frequency
considering only the trees with at least four nodes (in parentheses).

There is no necessary relation between the patterns and Width, Depth and
Strength measures: a low Depth does not imply the absence of the chain pattern,
nor does a high Width imply a high presence of the star pattern. However, the
combination of the two measures may provide some insights. For instance, we
saw in Table 3(a) that jazz leaders are concentrated in the lowest Width cluster.
However, many jazz leaders who affect at least three nodes tend to be prominent
in their neighbors, much more than in any other genre (7.25% of all leaders,
62.5% of leaders who are prominent for at least three other nodes). Therefore,



Pattern dance electronic folk jazz metal pop punk rap rock

3.62%
(35.42%)

3.04%
(22.50%)

3.94%
(30.30%)

7.25%
(62.50%)

4.14%
(23.08%)

3.69%
(32.01%)

6.56%
(27.59%)

4.01%
(27.97%)

4.22%
(30.43%)

2.55%
(25.00%)

3.92%
(29.00%)

3.15%
(24.24%)

4.35%
(37.50%)

4.83%
(26.92%)

3.61%
(31.29%)

10.66%
(44.83%)

5.60%
(38.98%)

4.12%
(29.71%)

3.40%
(33.33%)

3.79%
(28.00%)

3.94%
(30.30%)

4.35%
(37.50%)

6.90%
(38.46%)

4.73%
(41.01%)

12.30%
(51.72%)

4.99%
(34.75%)

4.52%
(32.61%)

Table 3: Presence of different diffusion patterns per tag.

jazz leaders have low prominence among their friends, however they are likely
to have at least three neighbors for which they are prominent.

The chain pattern is more commonly found in pop leaders than in folk ones,
even though the clusters of their leaders described in Table 3(a) would suggest the
opposite. It seems that pop leaders are not likely to be prominent for nodes any
further than the third degree of separation, while folk leaders tend to generate
longer cascade chains. Also in this case, punk leaders are commonly found in
correspondence with chain patterns, just as Table 3(a) suggested.

Although pop leaders show a much greater Strength value than metal ones
(by confronting in Table 3(a) their presence in high Strength clusters like 9 or
10 and low Strength clusters like 8 and 0), the split pattern tends to be more
frequent in the metal genre (6.90% against 4.73% of the trees). This phenomenon
suggests us that metal leaders tend to be prominent for nodes strongly devoted to
metal, inducing them to spread the music to their neighbors. Pop leaders, on the
other hand, affect more neighbors with higher Width and Strength, presumably
flooding their ego networks with the songs they like.

6 Conclusion

In this paper, we presented a study of the propagation of behaviors in a social
network. Instead of just studying cascade effects and the maximization of influ-
ence by a given starting seed, we decided to analyze three different dimensions:
the prominence of a leader on how many neighbors, on how distant nodes and
on how engaged nodes. We characterized each of these concepts with a different
measure: Width, Depth and Strength. We applied our leader detection algorithm
to a real world network. Our results show that: (i) central hubs are usually inca-
pable of having a strong effect in influencing the behavior of the entire network;
(ii) there is a trade-off between how long the cascade chains are and how engaged
each element of the chain is; (iii) to achieve maximum engagement it is better
to target leaders in tightly connected communities, although for this last point
we do not have conclusive evidence. We also included a case study in which we
show how artists in different musical genres are spread through the network.

Many future developments are possible. The limited prominence that central
hubs have on the overall network may be studied in conjunction with the prob-
lem of network controllability [15]. Alternative leader detection techniques, such



as the ones presented in [10], can be confronted with our proposed algorithm.
Finally, a deeper analysis of the properties of the Width, Depth and Strength
measures can be performed, using additional techniques and exploiting data from
other social media services like Twitter and Facebook.
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