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Abstract—Discovering communities in complex networks
means grouping nodes similar to each other, to uncover latent
information about them. There are hundreds of different algo-
rithms to solve the community detection task, each with its own
understanding and definition of what a “community” truly is.
Dozens of review works attempt to create order in such a diverse
landscape – classifying community discovery algorithms by the
process they employ to detect communities, by their explicitly
stated definition of community, or simply by their performance
on a standardized task. In this paper, we classify community
discovery algorithms according to a fourth criterion: the similar-
ity of their results. We create an Algorithm Similarity Network,
whose nodes are the different community detection approaches,
connected if they return similar groupings. We then perform
community detection on this network, grouping algorithms that
consistently return the same partitions or overlapping coverage
over a span of more than one thousand synthetic and real
world networks. This paper is an attempt to create a similarity-
based classification of community detection algorithms based on
empirical data. It improves over the state of the art by comparing
more than seventy approaches, discovering that the Algorithm
Similarity Network contains well-separated groups, making it a
sensible tool for practitioners, aiding their choice of algorithms
fitting their analytic needs.

I. INTRODUCTION

In this paper, we provide a bottom-up data-driven cate-
gorization of community detection algorithms. Community
detection, or discovery, in complex networks is the task of
finding groups of nodes that are closely related to each other.
Doing so usually unveils new knowledge about how nodes
connect, helping us predicting new links or some latent node
characteristic.

Community discovery is probably the most prominent and
studied problem in network science. This popularity implies
that the number of different networks to which community
discovery can be applied is vast and so is the number of its
potential analytic objectives. As a result, what a community
is in a complex network can take as many different interpre-
tations as the number of people working in the field.

Review works on the topic abound and often their reference
lists contain hundreds of citations [14]. They usually attempt a
classification, grouping community detection algorithms into
a manageable set of macro categories. Most of them work
towards one of three objectives. They classify community
detection algorithms: by process, meaning they explain the
inner workings of an algorithm and let the reader decide which
method corresponds to their own definition of community –
e.g. [14]; by definition, meaning they collect all community
discovery definitions ever proposed and create an ontology of

them – e.g. [6]; by performance, meaning that they put the
algorithms to a standardized task and rank them according to
how well they perform on that task – e.g. [18].

This paper also attempts to classify community discovery
algorithms, but uses none of these approaches. Instead, we
perform a categorization by similarity, e.g. which algorithms,
at a practical level, return almost the same communities. As in
the process case, we expect the inner workings of an algorithm
to make most of the difference, but we do not focus on them.
As in the definition case, we aim to build an ontology, but ours
is bottom-up data-driven rather than being imposed top-down.
As in the performance case, we define a set of standardized
tasks, but we are not interested in which method maximizes a
quality function.

Here, we are not interested in what works best but what
works similarly. This is useful for practitioners because they
might have identified an algorithm that finds the communities
they are interested in, but it has some downsides that make its
application impossible (e.g. a high time complexity). With the
map provided in this paper, a researcher can easily identify
the set of algorithms outputting almost identical results to
their favorite one which are not affected by its specific issues.
Maybe they perform slightly worse, but do so at a much higher
time efficiency.

We do so by collecting implementations of community
detection algorithms and extract communities on synthetic
benchmarks and real world networks. We then calculate the
pairwise similarity of the output groupings, using overlapping
mutual information [21], [26] – we need the overlapping
variant, because it allows us to compare algorithms which
allow communities to share nodes. For each network in which
algorithms a1 and a2 ranked in the top five among the most
similar outputs we increase their similarity count by one.

Once we have an overall measure of how many times two
algorithms provided similar communities, we can reconstruct
an affinity graph, which we call the Algorithm Similarity
Network (ASN ). In ASN , each node is a community discov-
ery method. We weigh each link according to the similarity
count, as explained above. We only keep links if this count is
significantly different from null expectation. Once we establish
that our reconstruction of ASN is resilient to noise and to our
choices, we analyze it. Specifically, we want to find groups of
algorithms that work similarly: we discover communities of
community discovery algorithms.

There are other approaches proposing a data-driven classi-
fication of community discovery algorithms [11], [10], [16].



This paper improves over this state of the art by: exploring
more algorithms (73) over more benchmarks (960 synthetic
and 819 real-world networks) than any other empirical test;
exploring more algorithm types – including overlapping and
hierarchical solutions –; looking at the actual similarity of the
partitions rather than simply the distribution of community
sizes.

Note that we were only able to collect 73 out of the hun-
dreds community discovery algorithms, because we focused
on the papers which provided an easy way to recover their
implementation. This paper should not be considered finished
as is, but rather as a work in progress. Many prominent
algorithms were excluded as it was not possible to find a
working implementation – sometimes because they are simply
too old. Authors of excluded methods should be assured that
we will include their algorithm in ASN if they can contact us
at mcos@itu.dk. The most updated version of ASN will then
be not in this paper, but available at http://www.michelecoscia.
com/?page id=1640.

II. RELATED WORK

This paper fits into the vast literature of community discov-
ery, specifically among those papers that try to organize it into
a reduced set of categories that can be understood and used
by practitioners. Community detection in complex networks
is a prolific field with hundreds of different approaches and
dozens of different community definitions. Such review works
are a necessary element to make the field manageable. We can
classify reviews into four categories, each of which focusing
on a different aspect of community discovery.

The first – and most popular – category includes works
classifying algorithms by the techniques they employ to divide
the graph into groups of nodes, i.e. by the process they employ.
Examples in this category are [27], [35], [14], [32], [15],
[13]; [19] – focusing on multilayer networks; and [4] – whose
attention narrows down to genetic algorithms. In our review
work, we are agnostic about how an algorithm works, as we
are focused on figuring out which algorithm returns similar
partitions to which other. This is influenced by how they work,
but we see that even algorithms based on the philosophy of
modularity maximization might end up in different categories.

The second category includes works classifying community
discovery algorithms by their stated definition of community
they are searching for in the network. Notable definition-based
review works are [39], [6], [25], [2], and [37], the latter three
focusing on directed, overlapping, and evolving networks,
respectively. This is the closest category to ours, as we are
also interested in building an ontology of community discovery
algorithms. However, the works in this category employ a top-
down approach. They take the stated – theoretical – definition
of community of a paper and use it to classify it. Here, we
have a data-driven approach: we classify algorithms not by
their theoretical and explicitly stated definition, but by their
practical results.

The third category – gaining popularity recently – includes
works classifying community discovery algorithms by giving

them a specific task and ranking them in how well they per-
form in that task. Such tasks can be maximizing modularity
or the normalized mutual information of the communities
they recover versus some other metadata we have about the
nodes. In this category, we can find papers such as [9], [20],
[30], [24], [18], [17], [44]; and, specifically for overlapping
community discovery, [41]. In line with this approach, we also
use standardized tests and benchmarks. However, we have no
interest in which algorithm performs “best” – whatever the
definition of “best” is – rather in what works similarly. We
have a small ranking discussion, but we use it to criticize the
notion of a “best” community discovery algorithm rather than
taking the results at face value.

The final, and least explored, category is interested in clas-
sifying the community discovery algorithms by the similarity
of their outputs [11], [10], [16]. This is where our paper
belongs. The typical paper in this category tests a handful
of algorithms on a limited number of synthetic or real world
networks. Here we include 73 algorithms1 – which is the
highest number of methods considered empirically – over
more than a thousand benchmark networks. This is not just
a quantitative improvement: by having more algorithms we
are also able to include a more diverse set of algorithms, with
different features. This makes our results a better picture of
the landscape of community detection in complex networks.

III. METHOD

The aim of this paper is to build an Algorithm Similarity
Network (ASN ), whose elements are the similarities between
the outputs of community discovery algorithms. To evaluate
result similarity is far from trivial, as we need to: (i) test
enough scenarios to get a robust similarity measure, and
(ii) being able to compare disjoint partitions to overlapping
coverages – where nodes can be part of multiple communities.

In this section we outline our methodology to build the
network, which has three phases: (i) creating benchmark
networks; (ii) evaluating the pairwise similarity of results
on the set of benchmark networks; and (iii) extracting the
backbone of ASN .

Before we start, a note about generating the results for
each algorithm. Many algorithms require parameters and do
not have an explicit test for choosing the optimal ones.
In those cases, we operate a grid search, usually selecting
the combination yielding the maximum modularity. This is
simpler in the case of algorithms returning disjoint partitions.
For algorithms providing an overlapping coverage, there are
multiple conflicting definitions of overlapping modularity. For
this paper, we choose the one presented in [23] as our objective
function.

1For space reasons, we are unable to cite the papers in which these
algorithms were presented. You can find the complete list of links and
references at http://www.michelecoscia.com/?page id=1640.



A. Benchmarks

We have two distinct sets of benchmarks on which to test
our community discovery algorithms: synthetic networks and
real world networks.

1) Synthetic Networks: In evaluating community discovery
algorithms, most researchers agree on using the LFR bench-
mark network generator [22] for synthetic testing. The LFR
benchmark creates networks respecting most of the properties
of interest of many real world networks. We follow the
literature and use the LFR benchmark. We make this choice
not without criticism, which we spell out in Section IV-B.

To generate an LFR benchmark we need to specify several
parameters. Here we focus on two in particular: number of
nodes n and mixing parameter µ – which is the fraction
of edges that span across communities, making the task
of finding communities harder. We create a grid, generat-
ing networks with n = {50, 60, 70, 80, 90, 100} and µ =
{.07, .09, .11, .13, .15, .17, .19, .21}. The average degree (k̄) is
set to 6 for all networks, while the maximum degree (K) is a
function of n. For each combination of parameters we generate
ten independent benchmarks with disjoint communities and ten
benchmarks with overlapping communities. In the overlapping
case, the number of nodes overlapping between communities
(on), as well as the number of communities to which they
belong (om), are also a function of n.

Our procedure generates 2 (overlapping, disjoint) × 10
(independent benchmarks) × 6 (possible number of nodes)
× 8 (distinct µ values) = 960 benchmarks. Due to the high
number of networks and to the high time complexity of some
of the methods, we are unable to have larger benchmarks.
However, the large number of benchmarks is necessary to
guarantee statistical power to our similarity measure between
community discovery algorithms.

2) Real World Networks: The downside of LFR bench-
marks is that the process they employ has a single definition of
community in mind. Therefore the tests are not independent,
and if an algorithm follows a different community definition,
it might fail in unpredictable ways, which makes our edge
creating process prone to noise.

To reduce this issue, we collect a number of different real
world networks. Communities in real world networks might
originate from a vast and variegated set of possible processes.
We assembled 819 real world networks, which were found
in the Colorado Index of Complex networks2. We selected a
high number of small networks to conform to our needs of
statistical significance as described in the previous subsection.

B. Evaluating Similarity

Once we run two community discovery algorithms on a
network, we obtain two different divisions of nodes into
communities. A standard way to estimate how similar these
two groupings are is to use normalized mutual information

2https://icon.colorado.edu/. Once again, for space reasons we cannot have
the complete list of references for these networks, which you can find at
http://www.michelecoscia.com/?page id=1640.

[40] (NMI). In information theory, the mutual information
quantifies the information obtained about one random variable
through observing the other random variable. The normalized
variant, rather than returning the number of bits, is adjusted to
take values between 0 (no mutual information) and 1 (perfect
correlation).

The standard version of NMI is defined only for disjoint
partitions, where nodes can belong to only one community.
However, many of the algorithms we test are overlapping,
placing nodes in multiple communities. There are several
ways to extend NMI to the overlapping case – to make an
Overlapping NMI (oNMI) measure –, as described in [21]
and [26]. We use the three definitions considered in these two
papers as our alternative similarity measures. These versions
reduce to NMI when their input is two disjoint partitions. This
allows us to compare disjoint and overlapping partitions to
each other.

We label the three variants as MAX, LFK, and SUM, fol-
lowing the original papers. Our default choice is MAX, which
normalizes the mutual information between the overlapping
results a1 and a2 with the maximum of the entropy of a1 and
a2. Note that, differently from LFK, MAX is corrected by
chance, meaning that unrelated vectors will have zero oNMI
MAX.

How do we aggregate the similarity results across our 1,779
benchmarks? We consider three options: (i) averaging them,
(ii) counting the number of times two algorithms had an oNMI
higher than a given threshold, and (iii) counting the number
of times two algorithms were each other in the most similar
algorithms in a given benchmark. We choose option (iii).

Option (i) has both theoretical and practical issues. It is
not immediately clear what is the semantic of an average nor-
malized mutual information. Moreover, we want to empathize
the scenarios in which two algorithms are similar more than
when they are dissimilar. There is only one way in which two
results can be similar, while there are (almost) infinite ways
for two results to be dissimilar. Thus similarity contains more
information than dissimilarity. If we take the simple average,
dissimilarity is going to drive the results.

Option (ii) solves some of the issues of option (i), but not
all. Specifically, NMIs will have different expected values for
different networks. If we choose an arbitrary threshold for all
benchmarks, we are going to overweight some benchmarks
over others. This is fixed by option (iii), which simply counts
the cases in which both algorithms agree on the same com-
munity structure in the network.

Note that both algorithms have to agree, thus this method
still allows algorithms to be isolated if they are dissimilar
to everything else. Suppose a1 is a very peculiar algorithm.
Regardless of its results, it will find a2 as its most similar
companion, even if the results are very different. Since the
results are different, a2 will not have a1 as one of its most
similar companions. Thus we will not increase the edge weight
between a1 and a2.

We will see in our robustness checks that the three options
return comparable results, with option (iii) having the fewest



theoretical and practical concerns.

C. Building the Network

The result from the previous section is a weighted network,
where each edge weight is the number of benchmarks in which
two algorithms were in each other most similar results. Any
edge generation choice will generate a certain amount of noise.
Algorithms with average results might end up as most similar
to other algorithms in a benchmark just by pure chance. This
means that there is uncertainity in our estimation of the edge
weights – or whether some edges should be present at all.

To alleviate the problem, we use the noise corrected (NC)
backbone approach [7]. The reason to pick this approach
over the alternatives lies in its design. The NC backboning
procedure removes noise from edge weight estimates, under
specific assumptions about the edge generation process, which
fit the way we build our network. ASN is a network where
edge weights are counts, broadly distributed – as we show
in the Analysis section –, and are generated with an hyper-
geometric “extraction without replacement” approach, which
are all assumptions of the NC backboning approach. For this
reason, we apply the NC backbone to our ASN .

The NC backbone requires a parameter δ, which controls
for the statistical significance of the edges we include in the
resulting network. We set the parameter to the value required
to have the minimum possible number of edges, while at the
same time ensuring that each node has at least one connection.
In our case, we set δ = 19.5, meaning that we only include
edges with that particular t-score (or higher), which is roughly
equivalent to say that p < .00001.

Again, note that we are not imposing the ASN to be
connected in a single component. Under these constraints,
ASN could be just a set of small components, each composed
by a pair of connected algorithms.

IV. ANALYSIS

A. The Algorithm Similarity Network

We start by taking a look at the resulting ASN network.
We show a depiction of the network in Figure 1 – calculated
using the oNMI MAX similarity function and setting δ = 19.5
for the noise corrected backboning. The network contains all
the results, both from synthetic and from real-world networks.

The first remarkable thing about ASN is that it does have a
community structure. The network is sparse – by construction,
this is not a result –: only 9% of possible edges are in the
network. However, and this is surprising, clustering is high –
transitivity is 0.47, or 47% of connected node triads have all
three edges necessary to close the triangle.

For these reasons, it is appropriate to run a community dis-
covery algorithm on ASN . We choose to run the overlapping
version of Infomap algorithm [38]. The algorithm attempts to
compress the information about random walks on the network
using community prefix codes: good communities compress
the walks better because the random walker is “trapped” inside
them.

Fig. 1. The Algorithm Similarity Network. Each node is a community
detection algorithm. The size of the node is the sum of its total edge weights.
The color depends on its community affiliation – multicolored nodes belong
to multiple communities. We establish links if the number of times the two
algorithms returned similar partitions – which determines the link’s width –
exceeds null expectation. The significance of the link determines its color:
from dark (high) to light (low, but still significant with p < .00001).
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Fig. 2. The (complement of the) cumulative edge weight distribution of the
full ASN : the probability (y-axis, log scale) that an edge has a weight equal
to or larger than a certain value (x-axis, log scale).

The quality measure is the codelength necessary to encode
random walks. The codelength gives us another corroboration
of the presence of strong communities. Without using com-
munity prefixes, we need ∼ 8.52 bits to encode the random
walks. With community prefixes, the codelength reduces to
∼ 4.48, practically half.

Figure 2 shows the complement of the cumulative distribu-
tion (CCDF) of the edge weights of ASN before operating
the backboning. We can see that, while the distribution is not
a power-law – note the log-log scale –, it nevertheless spans
multiple orders of magnitude, with a clear skewed distribution.
In fact, 50% of the edges have a weight lower than 10 – only
in 10 cases out of the possible 960 + 819 the two algorithms
were in the top five most similar results –, while the three
strongest edges (.1% of the network) have weights of 1,453,
1,519, and 1,540, respectively.

This means that the distribution could have been a power-
law, had we performed enough tests. In any case, such broad
distribution justifies our choice of backboning method, which
is specifically designed to handle cases with large variance and
lack of well-defined averages.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

O
N

M
I 

L
F

K

ONMI MAX

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

C
o

u
n

t

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

O
N

M
I 

S
U

M

ONMI MAX

 0

 10

 20

 30

 40

 50

 60

 70

 80

C
o

u
n

t

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

O
N

M
I 

S
U

M

ONMI LFK

 0

 10

 20

 30

 40

 50

 60

 70

C
o

u
n

t

Fig. 3. The correlation between the ASN weights using different oNMI
variants: (left) MAX vs LFK; (middle) MAX vs SUM; (right) LFK vs SUM.
Each dot is an algorithm pair and the color represent how many pairs shared
a given oNMI score combination.
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Fig. 4. The correlation between the ASN weights using the LFR benchmarks
(x-axis) and the real world networks (y-axis). Each dot is an algorithm pair and
the color represent how many pairs shared a given oNMI score combination.
We test different oNMI variants: (left) MAX, (middle) LFK, (right) SUM.

B. Robustness

In developing our framework, we made choices that have
repercussions on the shape of ASN . Here we explore how
much these choices impacted the final result. We are par-
ticularly interested in estimating the amount of change in
its topology, specifically whether ASN is stable: different
ASNs calculated with different procedures and parameters are
similar.

The first test aims at quantifying the amount of change
introduced by using a different oNMI measure. Recall that
our official ASN uses the MAX variant. There are two alter-
natives: LFK and SUM. Figure 3 shows how ASNs calculated
using them correlated with the MAX standard version.

It is immediately obvious from the plots that the choice
of the specific measure of oNMI has no effect on the shape
of ASN . We could have picked any variant and we would
have likely observed similar results. In fact, the correlations
between the methods are as follows: MAX vs LFK = 0.94;
MAX vs SUM = 0.99; LFK vs SUM = 0.97.

The second test focuses on the fact that we generated
ASN by putting together results from 960 synthetic LFR
benchmarks and 819 real world networks. Real world networks
do not necessarily look like LFR benchmarks – or like each
other. On the other hand, all LFR benchmarks are similar to
each other. Does that create different ASNs? We repeat our
correlation test and we show the results in Figure 4. As in the
previous cases, we observe a significant positive correlation
for all tests – albeit lower than before: LFR vs Real (MAX)
= 0.55; LFR vs Real (LFK) = 0.51; LFR vs Real (SUM) =
0.51.

All these correlations are still statistically significant (p ∼
0). However, we concede that there is a difference between
real world networks and LFR benchmarks. It is worthwhile
investigating this difference in future works, as a possible
argument against the blind acceptance of LFR as the sole

ID Col n Over Spr Q NSim
1 Red 21 0.9048 0.1429 0.0952 0.0952
2 Blue 28 0.3214 0.5357 0.1429 0.0357
3 Green 10 0.1000 0.0000 1.0000 0.0000
4 Purple 11 0.0909 0.0000 0.0000 0.7273
5 Orange 8 0.3750 0.2500 0.3750 0.0000

TABLE I
SOME FEATURES OF THE COMMUNITIES OF ASN . n: NUMBER OF NODES.

OVER: SHARE OF OVERLAPPING ALGORITHMS. SPR: SHARE OF
ALGORITHMS BASED EITHER ON CENTRALITY MEASURES (INCLUDING

EDGE BETWEENNESS AND RANDOM WALKS) OR SOME SORT OF
SPREADING PROCESS (E.G. LABEL PERCOLATION). Q: SHARE OF

ALGORITHMS BASED ON MODULARITY MAXIMIZATION. NSIM: SHARE OF
ALGORITHMS BASED ON NEIGHBORHOOD SIMILARITY, RATHER THAN

INTERNAL DENSITY. ALGORITHMS CAN BE PART OF MULTIPLE CLASSES –
OR NONE OF THEM –, SO THE ROWS DO NOT SUM TO ONE.

benchmark for testing community discovery algorithms.
Third, our edge weights are a count of benchmarks in which

two algorithms were in each other most similar lists. Alterna-
tive edge creation procedures might be to take the average
oNMI, or to count the similarity between two algorithms only
if they exceed a fixed oNMI threshold.

We motivated our choice in the Section III-B based on
theoretical reasons. Here we show that, at a practical level, our
results are not gravely affected by such choice. We do so by
calculating the NMI between ASN ’s communities obtained
with all three techniques. The ASN built by averaging the
similarity scores has a 0.63 NMI with our option, while the
one obtained by a fixed threshold has a 0.46 NMI. On the basis
of these similarities, we conclude that there is an underlying
ASN structure, and we think our choices allow us to capture
it best.

C. Communities

In Figure 1, we show a partition of ASN into communities.
A seasoned researcher in the community discovery field would
be able to give meaningful labels to those communities.
Here, we objectively quantify this meaningfulness along a few
dimensions of the many possible.

We start by considering a few attributes of community de-
tection algorithms, whether they: return overlapping partitions
(in which communities can share nodes), are based on some
centrality measure (be it random walks or shortest paths) or
spreading process (it will become apparent why we lump these
two categories), are based on modularity maximization [28],
or are based on a neighborhood similarity approach (e.g. they
cluster the adjacency matrix).

In Table I we calculate the fraction of nodes in a community
in each of those categories. Note that we count overlap nodes
in all of their communities, so some nodes contribute to up to
three communities. As we expect, some communities have a
stronger presence of a single category.

The largest community (in blue) groups centrality-based
algorithms (Infomap [38], Edge betweenness [29], Walktrap
[34], etc) with the ones based on spreading processes (label
percolation [36], SLPA [5], Ganxis [42], etc). Some of these
can be overlapping, but the majority of nodes in the com-
munity is part of this “spreading” category. This community



ID Col ¯|C| Avg Size d̄ Q̄ c̄ Avg Ncut
1 Red 19.7979 9.0942 0.3220 0.2200 0.7423 0.7674
2 Blue 5.6520 16.4769 0.2627 0.1102 0.5542 0.7100
3 Green 4.8948 11.9844 0.2580 0.1118 0.6288 0.7407
4 Purple 10.3702 11.0140 0.2917 0.0333 0.7555 0.8033
5 Orange 4.2852 17.0505 0.2329 0.0863 0.5963 0.7483

TABLE II
THE AVERAGES OF VARIOUS COMMUNITY DESCRIPTIVE STATISTICS PER ALGORITHM GROUP. ¯|C|: AVERAGE NUMBER OF COMMUNITIES. AVG SIZE:
AVERAGE NUMBER OF NODES IN THE COMMUNITIES. d̄: AVERAGE COMMUNITY DENSITY. Q̄: AVERAGE MODULARITY – WHEN THE ALGORITHM IS

OVERLAPPING WE USE THE OVERLAPPING MODULARITY INSTEAD OF THE REGULAR DEFINITION. c̄: AVERAGE CONDUCTANCE – FROM [24]. AVG NCUT:
AVERAGE NORMALIZED CUT – FROM [24].

shows a strong relationship between random walks, centrality-
based approaches, and approaches founded on spreading pro-
cesses.

The second largest community (in red) is mostly populated
by overlapping approaches (more than 90% of its nodes are
overlapping) – BigClam [43], k-Clique [31], and DEMON [8]
are some examples. The third largest community (in purple) is
mostly composed by algorithms driven by neighbor similarity
(more than 70% of them) rather than the classical “internal
density” definition (the two are not necessarily the same).
The fourth largest community (in green) exclusively groups
modularity maximization algorithms.

We now calculate descriptive statistics of the groupings each
method returns and then we calculate its average across all the
test networks. To facilitate interpretation, we also aggregate at
the level of the ASN community, as we show in Figure 1.
Table II reports those statistics. We also calculate the standard
errors, which prove that these differences are significant, but
we omit them to reduce clutter.

The results from Table II can be combined from the
knowledge we gathered from Table I. For instance, consider
community 4. We know from Table I that this hosts peculiar
algorithms working on “neighbor similarity” rather than inter-
nal density. This might seem like a small difference, but Table
II shows its significant repercussions: the average modularity
we get from these algorithms is practically zero. Moreover,
the algorithms tend to return more – and therefore smaller –
communities, which tend to be denser but also to have higher
conductance.3 This is another warning sign for uncritically
accepting modularity as the de facto quality measure to look
at when evaluating the performance of a community discovery
algorithm. It works perfectly for the methods based on the
same community definition, but there are other – different and
valid – community definitions.

Other interesting facts include the almost identical average
modularity between community 2 – whose algorithms are
explicitly maximizing modularity – and community 3 – which
is based on spreading processes. Community 1 has higher
internal density, but also higher conductance and normalized
cut than average, showing how overlapping approaches can

3Community 1 returns more communities, but it is composed by over-
lapping algorithms, which can return more communities without necessarily
make them small, as they can share nodes. Thus its communities are larger
than one would expect given their number.

Fig. 5. The ASN focusing exclusively on overlapping community discovery
algorithms. The legend of the figure is the same as the one for Figure 1.

find unusually dense communities, sacrificing the requirement
of having few outgoing connections.

The categories we discussed are necessarily broad and might
group algorithms that have significant differences in other
aspects. For instance, there are hundreds of different ways
to make your algorithm return overlapping communities –
communities sharing nodes. Our approach allows us to focus
on such methods to find differences inside the algorithm
communities. In practice, we can generate different versions
of ASN , by only considering the similarities between the
algorithms in the “overlapping” category.

Note that this is different than simply inducing the graph
from the original ASN , selecting only the overlapping al-
gorithms and all the edges between them. Here we select
the nodes and all their similarities and then we apply the
backboning, with a different – higher – δ threshold. In this
way, we can deploy a more stringent similarity test, that is able
to distinguish between subcategories of the main category.

Figure 5 depicts the result. Infomap divides the overlapping
ASN in three communities, proving the point that there are
substantial sub-classes in the overlapping coverage category.
There are strong arguments in favor of these classes being
meaningful, although a full discussion requires more space
and data. For instance, consider the bottom-right community
of the network (in blue). It contains all the methods which
apply the same strategy to find overlapping communities:
rather than clustering nodes, they cluster edges. This is true
for Linecomms [12], HLC [1], Ganet+ [33], and OLC [3].
The remaining methods do not cluster link directly, but ASN



Rank Algorithm oNMI MAX
1 linecomms 165
2 oslom 73
3 infomap-overlap 64
4 savi 62
5 labelperc 57
6 rmcl 54
7 edgebetween 41
7 leadeig 41
7 vbmod 41
10 gce 32

TABLE III
THE TEN NODES WITH THE HIGHEST MAX EDGE WEIGHT WITH THE

GROUND TRUTH NODE IN ASN – USING EXCLUSIVELY DATA FROM THE
LFR SYNTHETIC NETWORKS.

suggests that their strategies might be comparable.
We can conclude that ASN provides a way to narrow down

to subcategories of community discovery and find relevant
information to motivate one’s choice of an algorithm.

D. Ground Truth in Synthetic Networks

The version of ASN based on synthetic LFR benchmarks
allows an additional analysis. The LFR benchmark generates
a network with a known ground truth: it establishes edges
according to a planted partition, which it also provides as an
output. Thus, we can add a node to the network: the ground
truth. We calculate the similarity of the ground truth division
in communities with the one provided by each algorithm. We
now can evaluate how the algorithms performed, by looking
at the edge weights between the ground truth node and the
algorithm itself. In the MAX measure, this means the number
of times the algorithm was in the top similarity with the ground
truth and vice versa.

Table III shows the ten best algorithms in our sample. We do
not show the worst algorithms, because MAX is a strict test,
and thus there is a long list of (21) algorithms with weight
equal to zero, which is not informative. The table shows that
the best performing algorithm are Linecomms, OSLOM, and
the overlap version of Infomap.

Should we conclude that these are the best community
discovery algorithms in the literature? The answer is yes only
if we limit ourselves to the task of finding the same type
of communities that the LFR benchmark plants in its output
network. Crucially, this does not include all possible types of
communities you can find in complex networks. To see why
this is the case, consider again ASN from Figure 1. The ten
nodes listed in Table III are not scattered randomly in the
network: they tend to be in the same area. Specifically we
know that the ground truth node is located deep inside the
blue community, as most of the top ten algorithms from Table
III are classified in that group.

We can quantify this objectively by calculating the average
path length between the ten nodes, which is equal to 2.51 – on
average you need to cross two and a half edges to go from any
of these ten nodes to any other of the ten. This is shorter than
the overall average path length in ASN , which is 3.25. We test
statistical significance by calculating the expected average path
length when selecting ten random nodes in the network. Figure
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Fig. 6. The number of sets of ten random nodes (y-axis) with a given average
path length between them. The black line shows the observed value. The blue
line shows the average path length of the entire network.

6 shows the distribution of their distances. Only seven out of
a thousand attempts generated a smaller or equal average path
length.

We conclude this section with a word of caution when
using benchmarks to establish the quality of a community
discovery algorithm, which is routinely done in review works
and when proposing a new approach. If the benchmark does
not fit the desired definition of community, it might not return
a fair evaluation. If one is interested in communities based on
neighborhood similarity – the green community in Figure 1 –
the LFR benchmark is not the correct one to use. Moreover,
when deciding to test a new method against the state of the
art, one must choose the algorithms in the literature fitting
the same community definition, or the benchmark test would
be pointless. This warning goes the other way: assuming
that all valid communities look like the ones generated by
the LFR benchmark would impoverish a field that – as the
strong clusters in ASN show – does indeed have significantly
different perspectives of what a community is.

V. CONCLUSION

In this paper we contributed to the literature on reviewing
community discovery algorithms. Rather than classify them
by their process, community definition, or performance, here
we classify them by their similarity. How similar are the
groupings they return? We performed the most comprehensive
analysis of community discovery algorithms to date, including
73 algorithms tested over more than a thousand synthetic and
real world networks. We were able to reconstruct an Algorithm
Similarity Network – ASN – connecting algorithms to each
other based on their output similarity. ASN confirms the
intuition about the community discovery literature: there are
indeed different valid definitions of community, as the strong
clustering in the network shows. The clusters are meaningful
as they reflect real differences among the algorithms’ features.
ASN allows us to perform multi-level analysis: by focus-
ing on a specific category, we can apply our framework to
discover meaningful sub-categories. Finally, ASN ’s topology
highlights how projecting the community detection problem
on a single definition of community – e.g. “a group of nodes
densely connected to each other and sparsely connected with



the rest of the network” – does the entire sub-field a disservice,
by trivializing a much more diverse set of valid community
definitions.

By its very nature, this paper will always be a work in
progress. We do not claim that there are only 73 algorithms in
the community discovery literature that are worth investigat-
ing. We only gathered what we could. Future work based on
this paper can and will include whatever additions authors in
the field feel should be considered – and they are encouraged
to help us by sending suggestions and/or working implemen-
tations to mcos@itu.dk. The most up to date version of ASN
will be available at http://www.michelecoscia.com/?page id=
1640. Moreover, for simplicity, here we focused only on
algorithms that work on the simplest graph representations.
Several algorithms specialize in directed, multilayer, bipartite,
and/or metadata-rich graphs. These will be included as we
refine the ASN building procedure in the future.
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