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Degree Bias
● Stationary distr π

● π = degree

● Oversampled 
hubs!
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Re-Weighted RW
● Perform vanilla RW

● Re-weight property 
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● Respondent-Driven 
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Re-Weighted RW: Example
● p of a node having k=2?
● Observed: 20 over 100 (p 

= 0.2)
● Other nodes:

– k=1: 50
– k=3: 10
– k=4: 8
– k=5: 7
– k=6: 5

p2=
20∗1 /2

(50 /1)+(20 /2)+(10 /3)+(8/4)+(7 /5)+(5 /6)

p2=
10

67.56
∼0.148
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Snowball: Advantages
● Cheap in the 

physical world

● Smaller degree bias

● Works well with 
pagination

?

1

2
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Social Media APIs
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Length of the interval

(...latency)
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Pagination Paradox

50 edges / sec

10 edges / sec

Way more nodes here

5x slower in theory
2x faster in practice
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Benchmark Setup
● Six API systems from real social media:

– Flickr
– Lastfm
– Twitter
– Youtube
– Tumblr
– Google+



  

Benchmark Setup
● Different objectives:

– Degree Distribution
– Assortativity / Disassortativity
– Centrality
– Reciprocity
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Benchmark Setup

Budget Level

Low Budget = Few edges High Budget = Many edges

Quality Measure

(NB: not always “lower is better”)
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Assortativity MAE
(lower is better)

SW B-A LFR



  

Budget Levels
Degree Distribution Centrality Correlation

(lower is better) (higher is better)
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Conclusion
● We have to sample
● We have good theory…
● ...for the case of infinite time and paging 

sizes
● Which is not realistic
● Realistic constraints paint a critical picture
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