
124

The Node Vector Distance Problem in Complex Networks
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We describe a problem in complex networks we call the Node Vector Distance (NVD) problem, and we sur-
vey algorithms currently able to address it. Complex networks are a useful tool to map a non-trivial set of
relationships among connected entities, or nodes. An agent—e.g., a disease—can occupy multiple nodes at the
same time and can spread through the edges. The node vector distance problem is to estimate the distance
traveled by the agent between two moments in time. This is closely related to the Optimal Transportation
Problem (OTP), which has received attention in fields such as computer vision. OTP solutions can be used to
solve the node vector distance problem, but they are not the only valid approaches. Here, we examine four
classes of solutions, showing their differences and similarities both on synthetic networks and real world
network data. The NVD problem has a much wider applicability than computer vision, being related to prob-
lems in economics, epidemiology, viral marketing, and sociology, to cite a few. We show how solutions to the
NVD problem have a wide range of applications, and we provide a roadmap to general and computationally
tractable solutions. We have implemented all methods presented in this article in a publicly available open
source library, which can be used for result replication.
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1 INTRODUCTION

Complex networks are a mathematical tool that have been used in fields as different as physics
[4], economics [44], epidemiology [75], marketing [50], and computer science [17]. They can be
deployed to tackle a wide array of problems, from finding shortest paths [25] to community discov-
ery [20], and from link prediction [58] to cascade failures [14]. A complex network is composed of
a set of nodes connected by edges, frequently representing a constrained space on which a process
unfolds, e.g., the movement of a traveler from one place to another. Often, the process involves the
spread of an effect across the network. For example, nodes may represent people who are either
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Fig. 1. A toy example of a network describing the spread of an infection. Blue nodes are healthy people,

while red nodes are ones infected with the disease.

healthy or infected (Figure 1). In the toy example of Figure 1, if contact with an infected person is
sufficient to transmit the disease, then at the next time step we will have four additional infected
individuals.

Instead of focusing on individual nodes, and how or when they get infected, one could also focus
on the disease itself. This “agent”—the disease—morphs and moves as time goes by. An interesting
question is how far the disease, as a whole, has shifted over time. That is, given observations of
the network at two times, how far did the disease travel? When the agent is a single traveler,
who can only occupy a single node at any time, many approaches are available. For example, one
simple way to define a distance between two nodes is to take the shortest path between them, a
well-defined and understood problem [23].

When both the origin and the destination are sets of nodes, the situation is different. Drawing
a parallel with physics, one could view the movement of the agent on a network as analogous to
the movement of a cloud of particles. Each particle moves in a different direction, and one could
measure how far individual particles travel in a given period. However, one could also estimate
how far the cloud as a whole has moved, for example, by measuring how much its center of mass
has shifted.

For clouds of particles the solution is straightforward; in networks, it is much less clear how
one should define such a distance. The problem has received little attention, and even the compre-
hensive encyclopedia of distances [24] fails to list any distance measure between node vectors in a
graph, even though this problem arises often. The example above illustrates the case of epidemics
[18, 35, 75], while other cases include structural change in economics, where countries/firms di-
versify their export or production baskets across a network of technologically related products
[11, 44, 45, 70, 71, 92]; sensor networks, where a signal is recorded by multiple nodes and then
propagates [43, 85]; and viral marketing [28, 50, 54].

Existing efforts often solve the issue with ad-hoc strategies, and without explicitly stating the
distance problem involved. For instance, Reference [45] examines how a country’s export basket
shifts across a network of related products. In the absence of formal measures, the authors rely on
visual inspection of the network to observe changes in the basket.

To the best of our knowledge, the most explicit consideration of the problem has taken place in
work on the Optimal Transportation Problem (OTP), also called the earth mover’s distance in the
computer vision literature [87]. This problem is to find the most efficient way to transport a set
of node weights from an initial distribution to a final distribution. The optimal cost—in terms of
number of edges to be crossed—is the distance between the two node weight distributions [82, 93].
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The optimal transportation problem is a special assignment problem [16], and has been mostly
studied in the context of computer vision [78, 80]. Points of interest in a picture are nodes in a
planar graph (image plane or pixel grid), and the intensity of light on each node is compared to
decide if the two graphs describe the same image or not. Usually a variation of the Wasserstein
metric [38] is used that assumes not a metric space but one described by the graph [93]. This seems
to be the standard approach in configural perception models [83], for instance, in Elastic Bunch
Graph Matching [100].

The Optimal Transportation Problem carries several underlying assumptions; it uses global in-
formation, with a solution characterized by an omniscient agent who knows the full network, and
defines the distance to be the outcome of an optimization. Given these constraints, it is clear that
the OTP is but one of several classes of solutions to the general distance problem we formulate here.
To go beyond such limitations, we describe the more general Node Vector Distance (NVD) prob-
lem. As we show, the NVD problem can be solved using different approaches, which we group
into four classes: generalized Euclidean, shortest paths, spectral approaches, and adaptations of
NVD-related algorithms. Metrics in the generalized Euclidean class take the form of a generalized
Euclidean distance, accounting in various ways for the constraint of moving through the edges
of the network. Metrics in the shortest paths class build off shortest path solutions (including but
not limited to OTP approaches), where the distance between two node sets is an aggregation of
shortest paths between the nodes that compose them. The spectral class contains approaches that
exploit the relationship between the spectral representation of a graph and the diffusion processes
happening on it. Finally, we describe a collection of solutions that cannot be classified under any
of the other approaches.

Different classes of solutions make different assumptions about how the agent relates to the
network. As noted earlier, in OTP the agent has global and perfect information about the network,
and tries to minimize its effort. In other applications, it may be more appropriate for the agent to
move myopically or randomly across edges. We will see that methods using such assumptions can
assess distances across the network differently.

Here our main goal is to define the NVD problem and describe the broad approaches to solving it,
though we also begin the work of probing the various solutions with three kinds of tests. In the first,
we use synthetic networks to show strengths and weaknesses in controlled environments, where
we have prior expectations about how a well-behaved measure should respond. In the second, we
compare distance measures directly, asking which ones return similar results. Finally, we apply
our distance measures to real world data, asking whether they can uncover useful information
about the propagation properties of agents.

We have implemented all methods presented in this article in a publicly available open source
library, which can be used for result replication.1

2 PROBLEM STATEMENT

We start by defining NVD formally. We then discuss properties that we expect of solutions and
some possible applications.

2.1 Definition

LetG = (V ,E) be a network with a set of nodesV and a set of edges E. For simplicity, we consider
only undirected, unweighted graphs here. We assume that the networkG is unchanging over time.
In the node vector distance problem, we are interested in the change of some collective object that
occupies the graph, such as a rumor in a network of gossiping individuals or a firm in a network of

1http://www.michelecoscia.com/?page_id=1733.
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Fig. 2. Three agent vectors A on a simple graph. Red nodes are occupied by the agent.

related products. At any given time this object, or agent, occupies a portion of a network. Formally,
we define an agent as a vectorA of length |V | that assigns a weightA(v ) ∈ R+ to each nodev in the
network. These weights reflect the fact that an agent may occupy nodes with different intensities,
e.g., a firm may engage more intensively in some products than in others. When nodev has a non-
zero weight A(v ) > 0, we say that A occupies node v . For simplicity, we assume A is normalized
so that

∑
v ∈V A(v ) = 1.

An agent may move across a network or change how intensively it occupies different nodes.
Let At denote the agent at time t . The node vector distance problem is to measure the distance
δAti

,Atj
,G between the agent A at two times ti and tj as it evolves across the unchanging network

G. Intuitively, the details of G will significantly affect the distance that is measured. For instance,
in Euclidean space it is clear that the vectors At1 = (1, 0, 0), At2 = (0, 1, 0), and At3 = (0, 0, 1) are
equidistant—they are all a distance

√
2 apart—but in the simple network of Figure 2,At1 is expected

to be closer to At2 than to At3 .
While we consider unweighted networks here, many of the distance measures we consider can

be adapted to weighted networks with few modifications. We note that care should be taken to in-
terpret weights appropriately, since in some cases a large edge weight between two nodes indicates
a strong connection—the nodes could be considered close together—while in others it indicates a
high cost of edge traversal—the nodes are far apart.

2.2 Properties of Solutions

Strictly, a function δ must have four properties to be a distance metric [24]:

(1) Non-negativity: δAti
,Atj

,G ≥ 0.

(2) Identity of indiscernibles: δAti
,Atj

,G = 0 if and only if Ati
= Atj

(3) Symmetry: δAti
,Atj

,G = δAtj
,Ati

,G .

(4) Triangle inequality: δAti
,Atj

,G + δAtj
,Atk

,G ≥ δAti
,Atk

,G .

It is reasonable to think that δ need not have all four properties to usefully measure change in the
agent A. For instance, in statistics and machine learning, the cosine distance, Pearson correlation
distance, and Kullback-Liebler divergence all fail to satisfy one or more of these properties. Here,
we use “distance” loosely to mean a function δ that satisfies one or more of the above properties.

Our focus is on undirected networks, though we note that in some directed networks it may
be appropriate to modify the symmetry condition to read δAti

,Atj
,G = δAtj

,Ati
,G′ , where G ′ is the

graph obtained from transposing the adjacency matrix of G. In directed networks edge directions
may make a change from Ati

to Atj
harder or easier than the reverse change.
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Fig. 3. An example of face data as represented in elastic bunch graph matching [100]. Each node is a point

of interest (right eye, nose, chin, etc.), which is shaded according to the amount of light at each point.

2.3 Application Scenarios

In this section, we briefly discuss applications where the NVD problem arises, and why we may
want to look beyond OTP for solutions.

2.3.1 Computer Vision. We start with computer vision [78, 80], a classic application for the OTP.
An image is represented as a graph of points of interest, which have different loadings proportional
to how much light or color is in them (Figure 3). Two images are compared by computing how
much light must be “transported” from interest points of one to interest points of the other using
a measure known as the earth mover’s distance. Small amounts indicate the images are similar.

In this application one can see why solutions depend on solving the OTP. A good distance
between images should consider the whole image, or equivalently the whole graph of interest
points. At the same time one should try to edit the images as little as possible, i.e., we should not
need to move light far across the graph to unrelated points of interest if the images are similar.

2.3.2 Epidemics. Another potential application is measuring the speed of epidemics, where
nodes are people and the agent is a disease that occupies the nodes of infected individuals. The
spread of a disease depends less on the movement or infection rate of individuals than on the
movement of the disease as a whole. Figure 4 for example shows a simulation of the spread of
a hypothetical disease via the international traveler network using an SI model (see, e.g., Refer-
ences [18, 35, 75].)

2.3.3 Viral Marketing. A related problem is viral marketing, which is often modeled similarly
to a biological epidemic [28, 50, 54]. To learn how effective a marketing campaign was one would
like to know if news of a new product has travelled far. Success may mean not just reaching more
people, per se, but also reaching people in disparate parts of the network.

A related application is the use of distances between groups of individuals to infer similarity
in the products they use. Suppose two products each have established user bases among different
groups of individuals in the network. One could use the users of one product as the origin At1

and users of the other product as the destination At2 . The closer the users are the more similar we
expect the products to be.

2.3.4 Economics. Finally, we give an example of an NVD problem that arises in economics,
namely, in the study of country movements on the Product Space [44, 45]. In the Product Space
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Fig. 4. Simulated spread of a disease originating in Senegal (dark node near the bottom of the graph). Nodes

are countries, which are connected by an edge wherever a significant number of travelers move between

them. Darker nodes are countries infected early on, while lighter nodes are countries infected later.

nodes are products, and two products are connected by an edge if a significant number of countries
co-export both products. Often, such connections are interpreted in terms of capabilities needed
to produce different goods. For example, if cars and motorcycles are frequently co-exported, then
it suggests that similar knowhow is used in the production of both goods.

In this case an agent is a country, which occupies a set of products on the network corresponding
to its export basket. Over time a country may change its export basket, shifting its economy into
new industries that make different products. An interesting (and so far unaddressed) question is
how much or how quickly a given country has transformed its economy over time.

Simply counting the products that changed in the export basket may not adequately quantify
this transformation, because transitions into some products are more difficult than others [44, 45].
Instead, a distance measure must assign smaller distances to countries that move mainly among
products in the same connected cluster. For example, Figure 5 shows the change in the positions of
Korea and Egypt on the Product Space network between 1962 and 2013. In this period Korea and
Egypt added roughly the same number of products, though Korea would generally be regarded as
having undergone a larger transformation. In the network, this is reflected in the fact that Korea
made a large shift, from garment manufacturing and agriculture (right side in Figure 5) to electron-
ics, machinery, and chemicals (left side). While Egypt also spread to electronics, machinery, and
chemical products, more than half of its exports remain in garment manufacturing and agriculture.

3 CLASSES OF SOLUTIONS

Here, we develop a taxonomy of solution approaches for the NVD problem. We group the solutions
into four classes:

(1) Generalized Euclidean (Section 3.1);
(2) Shortest path-based (Section 3.2);
(3) Spectral (Section 3.3);
(4) Adaptations of NVD-related algorithms (Section 3.4).
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Fig. 5. Diversification of exports by Korea and Egypt over the Product Space network between 1962 and 2013.

Products not exported in significant quantities are grayed out. Visualizations from http://atlas.cid.harvard.

edu/.

Fig. 6. Our organization of the NVD literature. Each color represents a major branch. Acronyms defined in

Table 1.

In some cases, the approaches we suggest do not appear to have been analyzed in the literature
yet. Figure 6 elaborates on our organization of the solution categories, and Table 1 gives acronyms
for each method.

3.1 Generalized Euclidean

Solutions in the generalized Euclidean class involve metrics of the form

δAt1 ,At2
=

√
(At1 −At2 )TQ (At1 −At2 ),

ACM Computing Surveys, Vol. 53, No. 6, Article 124. Publication date: December 2020.

http://atlas.cid.harvard.edu/
http://atlas.cid.harvard.edu/


124:8 M. Coscia et al.

Table 1. The Acronyms We Use Throughout the Article to Shorten Distance Names

Acronym Method Class
Lapl Laplacian Generalized Euclidean
MMC Mean Markov Chain Generalized Euclidean
Annihil Annihilation Generalized Euclidean
OTP Optimal Transportation Problem Shortest Paths
MAPF Multi Agent Path Finding Shortest Paths
SPLS Shortest Path Length (Single linkage) Shortest Paths
SPLA Shortest Path Length (Average linkage) Shortest Paths
SPLC Shortest Path Length (Complete linkage) Shortest Paths
GFT Graph Fourier Transform Spectral
DPE Discrete Pursue Evasion Adaptations

whereQ is a positive semi-definite matrix that depends on the structure of the network. For metrics
in this class, distances on the network have the same form as distances in a high-dimensional Eu-
clidean space. The property of positive semi-definiteness guarantees that xTQx (and thus distance
δ ) will be a non-negative number. We discuss three metrics in this class, each using a different way
to construct Q from the graph’s adjacency matrix.

3.1.1 Graph Laplacian. One candidate forQ [19] is the Moore-Penrose pseudoinverse L+ of the
graph Laplacian L = D − E, where D is a diagonal matrix with node degrees on the diagonal and
E is the adjacency matrix. To see that Q = L+ is positive semi-definite, note that L’s singular value
decomposition is L = Q1ΣQT

2 , where Σ is a rectangular diagonal matrix containing L’s singular
values, while its pseudoinverse is L+ = Q2Σ+QT

1 , where Σ+ is a rectangular diagonal matrix whose
elements are the reciprocals of those of Σ. Since the eigenvalues (and therefore singular values)
of the graph Laplacian L are non-negative, those of L+ are as well, and thus L+ is positive semi-
definite. Further motivation for this choice of Q can be found in Reference [19], based on the
connection of the graph Laplacian to network diffusion processes.

3.1.2 Mean Markov Chain. We can show another way of obtaining Q by thinking of the net-
work as a Markov chain to motivate a z-score-like metric. We view node v’s intensity At1 (v ) as
the number of random walkers at node v at time t1, and construct a stochastic matrix P whose
elements give transition probabilities between nodes. A simple choice is P = D−1E, the matrix ob-
tained from normalizing columns of the adjacency matrix E by each node’s degree. Given a starting
node vector At1 , the expected number of random walkers arriving at node v in the next time step
is

E[At2 (v )] =
∑
d ∈V

Pv,dAt1 (d ),

and the variance is

σv (t1) =
∑
d ∈V

At1 (d )Pv,d (1 − Pv,d ).

A z-score-like distance from At1 to At2 can be motivated by considering the deviation of At2

from the expected value, E[At2 ] = PAt1 , normalized by the standard deviation of arrivals at each
node,

δ =

√√∑
v ∈V

(
At2 (v ) − E[At2 (v )]

σv (t1)

)2

,

ACM Computing Surveys, Vol. 53, No. 6, Article 124. Publication date: December 2020.



The Node Vector Distance Problem in Complex Networks 124:9

or in matrix form δ =
√

(At2 − PAt1 )Z−1 (At2 − PAt1 ) where [Z ]v,v = σv (t1)2. However, in this for-
mulation Q = Z−1 is not symmetric with respect to times t1 and t2, and the presence of P above
causes the metric to fall outside the generalized Euclidean class. To address these issues, we break
the motivational form above by eliminating P , and make Q symmetric by averaging the standard
deviations from taking At1 and At2 each as the starting vectors: [Z ]d,d =

[
σv (t1)2 + σv (t2)2

]
/2.

3.1.3 Annihilation. Like the MMC, the Annihilation measure draws on the intuition of diffu-
sion. In this case, we treat the random walkers as being so numerous that the system is always
characterized by its mean behavior, so that after one step At+1 = E[At+1] = PAt and after k steps
At+k = PkAt . In addition, we view both the initial vector At1 and the final vector At2 as diffusing,
the former with positive weights and the latter with negative weights. After k steps then, the vec-
tor of net node vector occupation weights is Pk (At2 −At1 ). One can think of this setup in analogy
with the annihilation of positive and negative charges diffusing across the network. If At1 repre-
sents the positive charges at each node andAt2 represents the negative charges, then Pk (At2 −At1 )
is the vector of net charges at each node after k steps.

If the Markov chain is regular, then PkAt2 and PkAt1 will each converge to a stationary distribu-
tion Ã as k → ∞. As a result Pk (At2 −At1 ) will converge to a vector of zeros, corresponding in the
physical analogy to the eventual annihilation of the positive and negative charges. To motivate a
metric, we characterize how long this convergence takes by considering the summation

S =
∞∑

k=0

Pk (At1 −At2 ).

To the extent thatAt2 andAt1 differ, or occupy weakly connected parts of the network, convergence
of the summation terms towards the zeros vector will take longer, resulting in a vector S with
elements (positive and negative) that are larger in magnitude. We can straightforwardly convert

the vector S into a distance by computing δ =
√
ST S .

While the summation over Pk (At1 −At2 ) converges (since these terms shrink to the zeros vec-
tor), a similar summation over Pk by itself will not, because limk→∞ Pk is the positive matrix
P∞ = [Ã, Ã, . . .], i.e., the matrix whose columns each equal the stationary distribution Ã. However,
one can show that S can be written in the convenient form S = [I − (P − P∞)]−1 (At1 −At2 ). The
advantage of writing S this way is that (At1 −At2 ) is now multiplied by a well-defined matrix,
F = [I − (P − P∞)]−1, which is known as the fundamental matrix in the theory of regular Markov

chains. The metric can then be written δ =
√
ST S =

√
(At1 −At2 )T FT F (At1 −At2 ), with Q = FT F ,

which falls again in the general Euclidean class.

3.2 Shortest Paths

Solutions based on shortest paths start by finding shortest distances between pairs of nodes, a
well-understood problem. Using a shortest path algorithm—for instance Dijkstra’s [25]—one can
first count edges separating node u to v . Then by aggregating over all shortest paths between
origin nodes in At1 and destination nodes in At2 one can define several distance functions δ .

In this section, we use LAt1,At2
to refer to the set of all possible path lengths between origins

and destinations. A shortest path length lu,v ∈ L is a path length with the least edge crossing to
move from node u to node v . We discuss two subcategories of this class: non-optimized methods
that simply aggregate over shortest paths, and optimized methods that seek the best combination
of paths from At1 to At2 .

ACM Computing Surveys, Vol. 53, No. 6, Article 124. Publication date: December 2020.
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3.2.1 Non-optimized. Here, we take hierarchical clustering as an inspiration for the aggregating
function δ . In hierarchical clustering there are three common ways to compute distances between
clusters [91]: single, complete, and average linkage. In single linkage, the distance between clusters
is the distance between their closest points, while in complete linkage the distance between clusters
is the distance between their farthest points. In average linkage, the cluster distance is an average
over the distances between all pairs of points in the two clusters. In the NVD problem, we can use
the same logic. For example, under the single linkage strategy, we compute the distance between
At1 and At2 as the distance between each node in At1 and the closest node in At2 .

ALGORITHM 1: Compute δAt1 ,At2,G
for single-linkage, non-optimized shortest path distance. Input: a

graph G, two vectors of reals of length |V | At1 and At2 .

1 δAt1 ,At2,G
:

2 δ ← 0;

3 At1 ← At1/
∑
At1 ;

4 At2 ← At2/
∑
At2 ;

5 L ← SPL(G,At1 ,At2 );

6 while
∑
At1 > 0 do

7 P ← {(u,v ) s.t. lu,v = minL and At1 (u) > 0,At2 (v ) > 0};
8 u,v ← arg max

min(At1 (u ),At2 (v ))
At1 ,At2 , ∀u,v ∈ P;

9 w ← min(At1 (u),At2 (v ));

10 δ ← δ + (w × lu,v );

11 At1 (u) ← At1 (u) −w ;

12 At2 (v ) ← At2 (v ) −w ;

13 end

14 return δ

15 end

Algorithm 1 shows the calculation of δ under the single linkage strategy. First, we normalize
the node vectors (lines 3 and 4). Next, we calculate the set of shortest path lengths between nodes
in At1 andAt2 (line 5). We then systematically shift weights one-at-a-time from one node vector to
the other via shortest paths (lines 6–13). To prepare to make a shift, we identify all pairs of nodes
(u,v ) in the two node vectors that are separated by the least shortest path (line 7). There may be
ties such that multiple pairs have the least shortest path, so among such pairs P, we find the pair
that can exchange the most weight (line 8). The weight w that can be shifted from one node to
the other is the lesser of At1 (u) and At2 (v ) (line 9). This weight, multiplied by the number of edges
lu,v to be crossed, is the contribution of this shift to a running total distance δ (line 10). Finally, we
deduct the shifted weight w from both At1 (u) and At2 (v ) (lines 11 and 12) to ensure this weight is
not shifted again and the loop eventually ends.

Potentially, one could modify the algorithm to construct a distance that accounts for changes in
the scale of node vectors as well as shifts in position. We could modify lines 3 and 4 to rescale the
node vector with the smaller sum to have the larger of the two sums. Then δ will accumulate not
only shifts in the weights from At1 to At2 but also the difference in their total weight.

In single linkage, if a nodev is part of bothAt1 andAt2 , then its contribution to δ is zero, because
lu,v = 0. If At2 = At1 , then δAt1 ,At2,G

= 0.
In complete linkage, we use the same algorithm but replace rmarдmin with arg max in line 6. In

this case δ is zero only when both At1 and At2 occupy the same single node. Note that if a node v
in At1 is also part of At2 , it will only pick itself as a destination if it has some residual weight after
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first distributing its weight to every other node in At2 . This shows that complete linkage does not
respect the identity of indiscernibles as single linkage does.

Finally, in average linkage δ is defined as the weighted average of the shortest paths between
all u ∈ At1 and all v ∈ At2 :

δAt1 ,At2,G
=

∑
∀v ∈At2

∑
∀u ∈At1

At1 (u)At2 (v )lu,v∑
At1

.

As in the single-linkage algorithm, we rescale At1 and At2 to have the same sum. If we also nor-
malize the vectors,

∑
At1 =

∑
At2 = 1, then only the numerator matters.

As we will see this measure is similar to OTP: At1 and At2 provide the weights, and lu,v the dis-
tance. The difference is that, in OTP, the flow is linearly optimized beforehand. In average linkage,
we move equal fractions of At1 ’s total weight to all destinations in At2 , while OTP tries to find the
“best” way to go from At1 to At2 .

3.2.2 Optimized. Methods to find the optimized combination of shortest paths to minimize the
distance crossed fromAt1 toAt2 are well studied. There are two approaches: OTP, and Multi-Agent
Path Finding (MAPF).

Optimal Transportation Problem. In its original formulation [67], OTP focuses on the distance
between two probability distributions without an underlying network. However, it has been ob-
served that this problem can also be applied to transportation over an infrastructure, known as a
multi-commodity network flow [46]. To adapt to the network case, one must simply specify how
distant two dimensions in the node vector are using a formal distance metric. The number of edges
in the shortest path between two nodes satisfies this requirement.

Such formulation is known in computer vision as the Earth Mover Distance. In mathematics, it is
known as the Wasserstein distance: a distance function defined between probability distributions—
our node vectors—on a given metric space, which in this case is specified by the graph G.

In OTP, we want to estimate the minimal edge crossings needed to transform the origin distri-
bution into the destination one. This is a high-complexity problem, which has lead to an extensive
search for efficient approximations [8, 29, 31, 49, 57, 62, 64, 76, 77, 87]. For our purposes these meth-
ods are equivalent, solving the same underlying problem using different approaches to perform
the expensive optimization step.

More formally, in OTP, we want to find a set of movements M such that:

M = arg min
mu,v

∑
u

∑
v

mu,vdu,v ,

wheremu,v is the weight to be transferred from node u to nodev and du,v is the distance between
them. Then:

δAt1 ,At2,G
=

∑
u

∑
v m

∗
u,vdu,v∑

u

∑
v m

∗
u,v

,

where m∗u,v ∈ M are the optimal movements. In this article, we take the distance du,v to be the
shortest path length between u and v , du,v = lu,v .

Multi-agent Path Finding. Another problem related to NVD is multi-agent path finding (MAPF)
on a graph [40, 103]. In this problem, multiple “robots” occupy one node at a time and each robot
has an intended destination [32]. The goal is to find the set of moves that allow robots to reach
their destinations in the most efficient way possible, or to discover that no solution exists [104].
There are usually constraints, such as edge capacities that limit each edge to be used by one robot
at a time [84].
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There are a few considerations one must address to use MAPF as a solution to the NVD problem.
First, in MAPF one must specify an origin and a destination for each robot in the graph, deciding
in advance which nodes u ∈ At1 should go to which v ∈ At2 . This is fundamentally different from
NVD, where each weight inAt1 can potentially reach any other destination inAt2 . Here, we use the
same strategy as in the non-optimized shortest path approach with single linkage: We look for the
shortest path length lu,v carrying the largest possible weight min(At1 (u),At2 (v )). This strategy is
naive and likely results in a suboptimal allocation.

Second, in MAPF robots cannot be on the same node at the same time. Say that we assign a
robot to go from u tov in our preprocessing. If At1 (u) > At2 (v ), then u will have some unallocated
weight. Thus, we would need to add at least a second robot that can start at u and terminate
at some other v ′. But this violates MAPF. We solve the issue by running a sequence of MAPF
sessions. In the second session, we attempt to move weights leftover after the first session. We keep
running smaller and smaller sessions until all weights have been allocated, which we guarantee
by normalizing vectors to have the same sum.

ALGORITHM 2: δAt1 ,At2,G
for multi-agent path finding distance. Input: a graphG, two vectors of reals

of length |V | At1 and At2 .

1 δAt1 ,At2,G
:

2 δ ← 0;

3 At1 ← At1/
∑
At1 ;

4 At2 ← At2/
∑
At2 ;

5 L ← SPL(G,At1 ,At2 );

6 while
∑
At1 > 0 do

7 R ← ∅;
8 L′ ← L;

9 while L′ � ∅ do

10 L′′ ← {(u,v ) s.t. lu,v = minL′};
11 u,v ← arg max

min(At1 (u ),At2 (v ))
At1 ,At2 , ∀u,v ∈ L′′;

12 w ← min(At1 (u),At2 (v ));

13 R ← R ∪ robot (u,v,w );

14 At1 (u) ← At1 (u) −w ;

15 At2 (v ) ← At2 (v ) −w ;

16 L′ ← L′ − {u ′,v ′ s.t. u ′ = u or v ′ = v}
17 end

18 δ ← δ +MAPF (G,R);

19 end

20 return δ

21 end

Algorithm 2 shows the details of this strategy. Unlike Algorithm 1, we now remove all paths
in L′ that either start in u or terminate in v (line 15), regardless of the At1 (u) and At2 (v ) values,
rather than only those attached to the node remaining with zero weight (Algorithm 1, line 6). That
is because, when we assign a robot to an origin-destination pair, no other robot can have either
endpoint. The function robot (u,v,w ) (line 12) creates a robot at nodeu carrying to nodev a weight
w . The set R stores all robots created in a session (line 12), and MAPF (line 17) is any algorithm
solving the MAPF problem given a graphG and a set of robots R. When a robot of weightw reaches
v from u over a path of length lu,v it adds a contribution lu,v ×w to distance δ . Note that in this
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approach lu,v need not be the shortest distance between u andv due to the capacity constraints of
edges.

There are many algorithms to solve MAPF [6, 26, 39, 56, 59, 61, 86, 95–97, 101], each providing
a different solution to NVD with our preprocessing strategy. In this article, we focus on only one
of them [90]. It may also be possible to adapt other MAPF algorithms to solve NVD, without our
suboptimal preprocessing strategy.2

A MAPF-based strategy to solve the NVD problem might be most appropriate when the network
represents a system such a road network, where there is a limit on the number of vehicles that can
use a road at a given time. We note that, in principle, MAPF should be equivalent to OTP when
there exists a solution with no collisions and allocates all weights in a single session. MAPF can
be seen as an approach that takes into account congestion, assuming a fixed capacity of one robot
per edge. A variation on this idea is to assume each edge has a capacity based on weight, so that
multiple robots with small weights could simultaneously pass over an edge.

3.3 Spectral

Another class of solutions to the node vector distance problem exploits the spectrum of the graph.
One motivation for these approaches comes from signal processing, where a common problem is
to extract the true signal ŝ from the noisy and correlated signal data s of a battery of sensors. The
relationships between sensor outputs are taken into account and modeled with a network G that
connects related sensors. The outputs from these sensors are smoothed using the Graph Fourier
Transform [43, 85].

To compute the Graph Fourier Transform, we first compute the graph Laplacian, L = D − E, and
compute its eigenvectors l0, l1, l2, . . ., whose eigenvalues λ ∈ R satisfy 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤
λ |V |−1. (As usual, we assume G is connected.) We then define Φ as the matrix whose columns
are these eigenvectors, arranged in increasing order of their eigenvalues: Φ = (l0, l1, . . . , ln ). The
Graph Fourier Transform Φ of a signal At1 is then Ât1 = ΦTAt1 . Transforming At1 by Φ converts
it from a spatial representation (where the elements of At1 correspond to nodes) to an eigenmode
representation.

To arrive at a distance metric, we can now weight the modes taking into account the topology
of the graph. This is usually achieved by filtering the signal in the spectral domain, multiplying it
with the diagonal matrix Λ containing the Laplacian’s eigenvalues on the diagonal. Applying this
transformation toAt1 andAt2 encodesG’s topology in the vectors, and then the Euclidean distance
between them is the node vector distance that we are looking for:

δAt1 ,At2,G
= Euclidean(At1 ΛΦT ,At2 ΛΦT ).

Note that this is not one, but it is a family of measures. Having filtered the node vectors At1 and
At2 , one could replace the Euclidean distance with another off-the-shelf measure to estimate the

distance between Ât1 and Ât2 , because they already contain G’s topology in their values. These
approaches can establish the distance between two different signals on a graph, though signal
processing is just one possible application. Others include signal cleaning [41], frequency analysis
[81], sampling [7], interpolation [69], and trend filtering [98]. We note the optimal transformation
could differ from the one here depending on the application.

2Any of these algorithms allowing robots to share origin/destinations, or to reach any valid destination from their origin,
may not need the preprocessing or may need only part of it.
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3.4 Adaptations

In this section, we discuss two approaches that were not originally developed to solve the NVD
problem, but can solve it using minor adaptations. These approaches could be considered related
to other categories already discussed, but we group them together because of similarities in how
we adapt them to NVD.

3.4.1 Discrete Pursuit-Evasion. In pursuit-evasion, we populate a space with a set of pursuer
and evader robots, where the pursuers’ aim is to capture the evaders. In discrete pursuit-evasion
(DPE) robots occupy a graph rather than a Euclidean space [74]. Many algorithms have been pro-
posed to model different strategies and constraints on both the pursuer and on the evader side; see
References [3, 5, 33, 60, 65, 89] for some recent examples.

To adapt DPE to solve NVD, we set the pursuers as At1 and the evaders as At2 , and then run any
DPE solving algorithm. Alternatively, both At1 and At2 are pursuers and try to capture each other,
with no evasion. Each time pursuers starting from u and v capture each other, the one carrying
the lesser weight w = min(At1 (u),At2 (v )) disappears, and the other then carries its own weight
minus w . The amount of time it takes for all weights to disappear is the distance between At1 and
At2 . If At1 and At2 sum to the same value, then the system will eventually converge.

3.4.2 Information Theory. Information theory is another possible source of solutions to the
NVD problem. At an abstract level NVD involves the comparison of two vectors, while in informa-
tion theory it is also common to compare two vectors, e.g., when computing the Kullback-Leibler
divergence [52], or mutual information [22]. These approaches have been successfully employed
in data clustering [94]. As with the classical Euclidean distance, the challenge with adapting in-
formation theory to the NVD problem is to account for the underlying network structure. A large
element-wise difference between portions of these vectors might be regarded as a small change
if the nodes they represent are clustered in the network. Conversely, small differences should be
amplified if they involve nodes that are far from each other.

There is some work to apply KL-derived divergences to networks [34, 63], but these papers focus
on estimating topological differences between two graphs, rather than changes in an agent oper-
ating in an unchanging topology. For this reason, they are more related to the graph isomorphism
problem [9, 51, 102] than the problem discussed here.

A possible sketch of a solution is the following. First, let us recall the discrete KL-divergence
formulation:

δAt1 ,At2,G
= −

∑
v ∈V

At1 (v ) log

(
At2 (v )

At1 (v )

)
,

where both At1 and At2 are normalized to sum to one. This is the expectation of the logarithmic
difference between the probabilities At1 and At2 , where the expectation is taken using the proba-
bilities At1 . This formulation has three obvious problems. First, it only considers the divergence of
nodev with itself. Second, it ignoresG’s topology. Finally, it is undefined for all nodesv for which
At1 (v ) = 0 or At2 (v ) = 0. One possible solution for the first two problems is to transform it into a
weighted entropy measure, usingG’s topology to weight the contributions of node pair u,v to the
distance—for instance, the length of the shortest path between them. However, how to deal with
the third problem is not trivial. Moreover, the measure, just like KL-divergence, is not symmetric,
since (At2 (v )/At1 (v )) � (At1 (v )/At2 (v )) unlessAt2 (v ) = At1 (v ). How to solve these issues is left as
future work.

3.4.3 Edit Distances. Another possible source of distance measures from information theory is
the concept of edit distance. The most simple possible edit distance is the Hamming distance [42].
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This is defined for strings of equal length: it is the number of positions at which the correspond-
ing symbols are different. If we were to translate the Hamming distance to continuous numerical
vectors, then this could be simply the sum of their absolute elementwise differences.

More sophisticated edit distances, for instance Levhenstein [55], Jaro [48], and Jaro-Winkler
[99] distances, are variations of an optimized Hamming distance: they attempt to find the small-
est possible number of edits to transform string At1 into string At2 . All these measures work on
monodimensional strings and they thus need to be adapted to our setting, in which the vectors
live on a graph.

This does not mean to transform these into a graph equivalent of the string edit distance for two
reasons. First, there already exist graph edit distances [10, 15, 68, 79], but these measure the differ-
ences between two graphs with different topologies, not differences in node weight on the same
graph with the same topology. In other words, they ask: How many node/edge additions/deletions
does one need to perform to transform graph G1 into graph G2 [36]?

Second, the mentioned string edit distances could actually be enhanced by the solution of the
NVD problem. Finding distances between strings are, in a sense, looking for an NVD distance. For
example, δ (analyze, analyse) should be smaller than the distance δ (analyze, analyqe), because the
similarity between letters “z” and “s” is greater than the similarity between “z” and “q,” given their
phonetic and cultural uses (American vs. British English). Here, letters are nodes in a graph and
edges connect similar letters. However, most measures of string distance do not account for such
letter similarities.

The sketch of the adaptation of edit distances to solve the NVD problem is similar to the one
we used to adapt the KL-divergence. Namely, each difference between elements from At1 and At2

needs to be weighted with a scheme that takes G’s topology into account, for instance the length
of the shortest path between the two nodes, or any measure of node similarity [13]. This is sim-
ilar to the spirit of the Jaro-Winkler distance, since in that case elements in different parts of the
string contribute differently to the distance—specifically, mismatches at the beginning of the string
weight more than mismatches at the end of it. We also leave the development of such measure as
future work.

3.4.4 Fingerprint Encodings. This class of solution comes from the computer-aided drug discov-
ery literature [37, 66]. The approach here is to compare two molecules that have different nodes
and edges by using either the Jaccard coefficient [27, 72, 88], or one of its generalizations, e.g., the
Tversky index [73].

Note that here we are putting a few constraints on the NVD problem, while relaxing others.
Specifically, we force node differences to be binary, meaning that either two nodes are matching
or they are not. So, At1 and At2 cannot contain continuous values. Second, these solutions also
consider changes in the graph’s structure. One can avoid considering this part of the measure, or
they could be used to define NVD on a changing topology, namely, when the graphG also changes
over time. We leave such considerations as future work.

4 EVALUATION

In this section, we perform experiments to answer the following questions:

• Section 4.1: Do the distance measures discussed here make sense? Do they agree with hu-
man intuition?

• Section 4.2: How do the distances given by different measures compare with one another
when applied to the same node vectors?

• Section 4.3: How do the measures behave in real world scenarios? What are their strengths
and weaknesses? What questions can we answer with them?
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Fig. 7. Instances of the Chain Test. We set as origin and destination the two endpoints of the chain, with

progressively longer chains.

Fig. 8. The distance between At1 and At2 in the chain test as a function of chain length.

Code and data to replicate the results of this section are included in a publicly-available repository.3

This includes implementations of all node vector distance metrics described in Section 3.

4.1 Validation

Do the metrics discussed here behave in intuitive ways? In this section, we study the behavior
of the metrics in three tests using simple network topologies and occupation strategies by the
agents. In the first test, we examine how metric distance increases in a chain network as its length
increases. In the second and third tests, we consider whether longer distances traveled by an in-
fectious agent correlate with higher infectiousness in an epidemic model.

4.1.1 Chain Test. We consider a chain graph of length n, i.e., n nodes connected by n − 1 edges
(Figure 7). At time t1, we set the agent entirely at one end of the chain (At1 (v ) = 1 for node v at
one end of the chain and zero at all other nodes) and at time t2, we set the agent entirely at the
other end. Figure 8 shows how the distance varies as a function of chain length n for each metric.

As we expect most metric distances increase with chain length. The OTP, all variants of shortest
path metrics, and MAPF all give the same distance, equal to the number of edges n − 1. Similarly,
the Laplacian and Annihilation metrics give the same distance, which is equal to

√
n − 1. GFT

rises but quickly plateaus, assigning nearly the same value to chains of length 10 and length 100.
Alone among the metrics the MMC actually shrinks with chain length. While this test is simple it
provides a straightforward criterion to distinguish (and select among) different behaviors.

4.1.2 Epidemics Test. In the second test, we consider a contagion model, the Susceptible-
Infected (SI) model of an epidemic outbreak. Nodes can be in either of two states: Susceptible
(S) or Infected (I). When a node in state S has at least one neighbor in state I, it will transition
to state I with probability β . Intuitively, the higher that β is (i.e., the more infectious the disease),
the farther the disease will spread across in a given period. We therefore expect the distance trav-
eled by the disease to be positively correlated with the infectiousness parameter β . To test this,
we simulate an epidemic on a network, measuring the correlation between the distance traveled
according to each metric and β .

3http://www.michelecoscia.com/?page_id=1733. The library depends on reLOC, an algorithm to solve the MAPF problem,
which one should retrieve and compile from http://surynek.com/research/files/reLOC-0.20-kruh_043.tgz.
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Table 2. Correlation Coefficients of Each Measure with the Infection Parameter β in the SI Model

Topology Lapl MMC Annihil OTP SPLS SPLA SPLC GFT MAPF Count

ER 0.4229*** 0.4644*** 0.5916*** 0.6630*** 0.6747*** 0.3132*** 0.0125 0.3022*** −0.2131*** 0.9736***

BA 0.4187*** 0.2717*** 0.5995*** 0.6212*** 0.7076*** 0.2535*** 0.1006** 0.1735*** −0.2674*** 0.9667***

PC 0.4640*** 0.3017*** 0.6294*** 0.6301*** 0.7222*** 0.2746*** 0.1510*** 0.1642*** −0.1437* 0.9608***

LFR 0.4403*** 0.4082*** 0.4420*** 0.5962*** 0.5921*** 0.1714*** 0.0881** 0.1671*** −0.1570** 0.9721***

Bold indicates the measures with a correlation coefficient significantly higher than the Count baseline (t-test based on
bootstrapping). Red indicates measures negatively correlated with β . *p < 0.1, **p < 0.01, ***p < 0.001.

LetAt1 denote the vector of infected nodes at the beginning of the outbreak andAt2 the infected
nodes after several infection steps. We run an SI model on a network of |V | = 100 nodes using four
different topologies:

• Erdos-Renyi random networks [30]: We connect pairs of nodes uniformly at random with
probability p = 0.095. We force the graph to have a single connected component.

• Barabasi-Albert preferential attachment [12]: We grow a network one node at a time until it
has 100 nodes. Each node connects to five existing nodes picked randomly with probability
proportional to their current degree.

• Clustered power-law networks [47]: We follow the same procedure as above, except that,
in addition, every time we add an edge there is a 1% probability we also close a triangle in
the network.

• LFR benchmarks [53]: This model imposes a power-law degree distribution, high clustering,
and a community partition on the network, with nodes more likely to connect to other nodes
if they are part of the same community. We set an average degree of 5.

Thus, we start from a uniformly random network and make it progressively more complex by
adding, in order, a power-law degree distribution, clustering, and community structure. For each
topology, we run 300 SI models, in each run drawing β from a uniform distribution between 0 and
1.

Table 2 reports the correlations between β and δAt1 ,At2
. As we expect most methods return

distances that are positively correlated with β . The strongest correlations are seen in the shortest
path metric with single linkage. In contrast, the shortest path metric with complete linkage shows
a much weaker correlation with β , and MAPF shows a strongly significant negative correlation. For
comparison, we also look at a simple count of the nodes that became infected during the epidemic.
As expected, a larger epidemic is associated with a higher infectiousness with a nearly perfect
correlation.

4.1.3 Viral Marketing Test. In simple contagion, nodes need no reinforcement to transition be-
tween states. One infected neighbor is sufficient to transmit the disease. In the third test, we ex-
amine a complex contagion model, specifically a cascade model, in which a node becomes infected
whenever a fraction γ or greater of its neighbors are infected. In this model, nodes can also tran-
sition back into the S state, which happens whenever the fraction of a node’s infected neighbors
falls below γ . Higher γ thus makes both infection harder and recovery easier. This process could
represent a viral marketing campaign, where peer pressure drives sustained interest from a target
audience.

The changes to the simple contagion model have a significant impact. When people have a
low interest threshold, they are easily swayed. The final state may have individuals throughout
the population adopting the interest (Figure 9(b)). When people have a high interest threshold,
they need to be surrounded by many interested individuals to become (and remain) interested
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Fig. 9. An example run of the cascade model. (a) Starting condition, interested nodes in green, non-interested

nodes in red. (b) End of the process for a low γ threshold. (c) End of the process for a high γ threshold.

Table 3. Correlation Coefficients of Each Measure with the Infection Parameter γ in the Cascade Model

Topology Lapl MMC Annihil OTP SPLS SPLA SPLC GFT MAPF Count

ER 0.2452*** 0.2929*** 0.2844*** −0.0354 0.0718 −0.1785*** −0.2829*** 0.2421*** −0.0025 −0.6419***

BA 0.3277*** 0.2906*** 0.4118*** 0.0398 0.0993* −0.3046*** −0.3966*** 0.3075*** 0.0933 −0.6734***

PC 0.2378*** 0.2678*** 0.3121*** −0.0120 0.0175 −0.2888*** −0.2957*** 0.2893*** 0.0084 −0.6128***

LFR 0.4827*** 0.4368*** 0.4838*** 0.3406*** 0.3198*** −0.1858*** −0.3399*** 0.3565*** 0.3877*** −0.8287***

Bold indicates the measures with correlation significantly higher than the Count baseline (t-test based on bootstrapping).
Red indicates measures negatively correlated with γ . *p < 0.1, **p < 0.01, ***p < 0.001.

themselves. In the final state, only small communities of self-reinforcing interest remain
(Figure 9(c)). As a result, the absolute change in interested individuals (Count) in this case is
smaller. This effect can be seen in the negative correlation between Count and γ in Table 3.

Nevertheless, as Figure 9 shows visually, the change in the agent as a whole is larger in the high
γ case. With low γ , the agent occupies all parts of the network in both the initial and final states.
With high γ , the agent has a dramatically different pattern of occupation in the initial and final
states. This change is not reflected in the Count variable, but it is reflected in several of the distance
metrics, in particular GFT and the generalized Euclidean metrics, which are positively correlated
with γ , as Table 3 shows. This further illustrates the key point that the movement of an agent on
the network may differ significantly from the sum of changes across individual nodes.

4.2 Similarity

We now explore how the various measures compare with one another when applied to the same
node vectors on a given network. This is a practical question; for example, it may be that some
measures give similar results, regardless of how they are theoretically motivated. We generate 150
networks with each of the four topologies above (Erdos-Renyi, Barabasi-Albert, Power-Cluster,
LFR Benchmark), together with randomAt1 andAt2 vectors, giving 600 distances for each measure.
To generate node vectors, we choose between two and ten nodes at random, assigning each a
random weight between zero and one. For each pair of distance measures, we then calculate the
Spearman rank correlation across the 600 observations.

We summarize the results in Figure 10. For each distance measure, we first compute its average
correlation with all other measures, and then draw links to other distances for which the pairwise
correlation exceeds this average. We only show correlations that significantly exceed the average,
after applying a backboning of the network to correct for noise [21].
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Fig. 10. Measures connected to the other measures to which they are most similar. We color nodes according

to the classification proposed in Figure 6. The edge’s width is proportional to the Spearman correlation value,

the edge’s color is proportional to how much it exceeds the connected measures’ expected correlation. All

links shown are significant, with darker color indicating higher significance.

The results show that distance measures are more similar to measures that fall in the same class,
as categorized in Section 3. Shortest path-based measures (blue nodes) form one cluster, while
approaches based on diffusion (red and green) form another. This suggests that our classification
may not just be conceptually or theoretically useful but also indicates how numerical results may
work out in practice. Notably, the two clusters align with two broad paradigms to construct metrics:
a global approach, where full knowledge of the network is used to minimize edge crossings, and a
myopic approach, where distances are based on random walks.

4.3 Applications

In this section, we elaborate on the applications in Section 2.3. For each, we explore how NVD
measures can be used to characterize diffusion-like processes on networks.

4.3.1 Product Space. Recent research shows how the concept of economic complexity is useful
to understand and predict the economic development of a country [44]. Informally, a country’s
complexity is a count of its underlying production capabilities, where having a wider range of
capabilities enables more diverse products to be made. The complexity of an economy is often in-
ferred from observing the products it makes. Estimating complexity begins by building the “Prod-
uct Space,” a network of tradable products. Two products are strongly connected if they often
co-appear in the export baskets of countries. In terms of the NVD problem, a country is an agent
that occupies a network of goods, and seeks to diversify, spreading to parts of the network that it
has not yet reached.

Typically, the amount of diversification a country has realized over some period is estimated
by the number of new exports it has added. However, some products are more closely related
than others (as the Product Space itself shows), so a simple count of new products could provide
poor estimates of diversification when these products are too closely related to one another. In
principle, NVD measures could capture diversification in a more sophisticated way, accounting
for the distance the country traverses across the network.

To examine this, we take the export vectors of 76 countries from 1962 to 2013. We average their
exports in each decade to smooth out short-term fluctuations. Then, we calculate the speed with
which a country diversifies from one decade to the next using our NVD measures. We compute
the Spearman rank correlation of this speed with the absolute value of GDP per capita change over
the following decade, with a small time overlap (Table 4). For example, we observe the distance
covered by a country from the 1962–’72 period to the 1973–’83 period, and compute its correlation
to the country’s absolute GDP per capita change between 1980 and 1990.

Consistent with our expectation, countries that realize faster economic change are also travers-
ing the network more quickly. The number of products in existence is inherently ambiguous, so we
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Table 4. The Spearman Correlation of Each NVD Measure with GDP per Capita

Change, for Different Aggregation Levels in the Product Space

Measure 1 Digit (10) 2 Digit (68) 3 Digit (237) 4 Digit (774)
Lapl 0.2086∗∗∗ 0.1104∗ 0.1870∗∗∗ 0.2154∗∗∗

MMC 0.2215∗∗∗ 0.1785∗∗∗ 0.1670∗∗∗ 0.1314∗∗

Annihil 0.2314∗∗∗ 0.1844∗∗∗ 0.2302∗∗∗ 0.2607∗∗∗

OTP 0.2125∗∗∗ 0.2317∗∗∗ 0.2865∗∗∗ 0.3056∗∗∗

SPLS 0.2148∗∗∗ 0.2401∗∗∗ 0.2917∗∗∗ 0.3073∗∗∗

SPLA 0.1000 0.0780 0.2250∗∗∗ 0.2464∗∗∗

SPLC 0.0991 0.0563 0.2323∗∗∗ 0.2288∗∗∗

GFT 0.1924∗∗∗ 0.1012 0.1022∗ 0.1729∗∗∗

MAPF 0.2113∗∗∗ NA NA NA
Count 0.0994 0.0418 0.1847∗∗∗ 0.2612∗∗∗

ECI 0.0123 0.0471 0.1845∗∗∗ 0.1735∗∗∗

The numbers in parentheses in the column headers are the number of products ( |V |) in the
network. ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.

compute these correlations at four aggregation levels of SITC product categories, with 10, 68, 237,
or 774 products. Notably, the change in diversity (Count) in the previous decade is not consistently
associated with GDP change in the next decade. Its performance improves when there are more
goods, but this lack of consistency makes a direct count of products risky in practical settings; it
is difficult to know if the number of goods used in a given data set is large enough. However, a
number of NVD measures consistently have a significant association with GDP change. We also
note that more sophisticated measures such as the Economic Complexity Index [44] (ECI) behave
similarly to the count of goods.

4.3.2 Epidemics. With adaptation, NVD metrics could potentially shed light on how dangerous
a disease is, by quantifying spreading outcomes on a network as a whole, rather than local infec-
tiousness among individuals. To demonstrate this idea notionally, we look at data from the World
Health Organization (WHO)4 on four outbreaks between 1996 and 2019: Ebola, Dengue, Avian Flu,
and Zika. For each outbreak, we consider the movement of individuals across countries as charac-
terized by the network of worldwide international flight traffic using data from OAG.5 Using each
distance measure, we compute how far the disease traveled in each month after the disease had
first appeared, and then average these monthly distances to obtain a typical speed (Table 5).

With some exceptions, most methods agree on the relative order of the outbreaks, ranking Zika
the fastest and Ebola the slowest. While Ebola can cause immediate infection when in contact with
a symptomatic individual, an asymptomatic Ebola infected person cannot spread the virus,6 while
a symptomatic patient is so debilitated as to be extremely noticeable. This lowers the potential of
the disease to be a pandemic. In contrast for Zika the majority of infected individuals can carry
the virus even if not symptomatic,7 and most carriers are not easily detected.

4.3.3 Viral Marketing. A similar analysis can be done to gauge the spread of products on a
social network. To demonstrate this idea, we use data from the online social network Anobii [1, 2].
In Anobii, users have “bookshelves” where they keep the books they have read. Users can connect

4https://www.who.int/csr/don/archive/disease/en/.
5https://www.oag.com/.
6https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease.
7https://www.who.int/news-room/fact-sheets/detail/zika-virus.
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Table 5. The Average Monthly Distance Covered on the Flight Network

by the Four Diseases

Measure Ebola Dengue Avian Flu Zika
Lapl 0.0048 0.0152 0.0172 0.0476
MMC 0.0283 0.0545 0.0580 0.1931
Annihil 0.0262 0.0843 0.0945 0.1963
OTP 0.0435 0.1032 0.1502 0.3977
SPLS 0.0435 0.1032 0.1522 0.4272
SPLA 0.2412 0.4843 0.7385 1.3350
SPLC 0.2985 0.6162 0.9524 1.6623
GFT 0.4408 1.9936 1.8378 5.8700
MAPF 0.3040 0.6828 1.1037 1.6773

Table 6. The Fastest Moving Books in the Anobii Dataset, per Measure

Measure Title Author
Lapl The Girl Who Kicked the Hornets’ Nest Stieg Larsson
MMC The Girl Who Kicked the Hornets’ Nest Stieg Larsson
Annihil The Girl Who Kicked the Hornets’ Nest Stieg Larsson
OTP The Girl Who Kicked the Hornets’ Nest Stieg Larsson
SPLS The Girl Who Kicked the Hornets’ Nest Stieg Larsson
SPLA Harry Potter and the Half-Blood Prince J.K. Rowling
SPLC Harry Potter and the Half-Blood Prince J.K. Rowling
GFT Fight Club Chuck Palahniuk

Table 7. The Slowest Moving Books in the Anobii Dataset, per Measure

Measure Title Author
Lapl Novecento Alessandro Baricco
MMC Siddharta Hermann Hesse
Annihil Novecento Alessandro Baricco
OTP Excursion to Tindari Andrea Camilleri
SPLS The Snack Thief Andrea Camilleri
SPLA The Snack Thief Andrea Camilleri
SPLC The Snack Thief Andrea Camilleri
GFT Novecento Alessandro Baricco

to friends, and discover the books they have read. In terms of the NVD problem a book is an agent,
occupying more nodes as more users add it to their bookshelves.

We consider the spread of books through the network using data collected in six two-week snap-
shots over twelve weeks from September to December 2009. For each book, we calculate its average
speed across the observation period. For each measure we report the fastest-moving (Table 6) and
slowest-moving (Table 7) books. In both cases, a number of measures agree on the same books.

The results here show how NVD measures could be useful in understanding whether an agent
is propagating by a given network’s edges or not. Anecdotally, the fastest-moving books are
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well-explained by external shocks. For instance, the Harry Potter movie adaptation of the observed
book was released in July 2009, just before the observation window, and likely fostered book
sales. Movies adapting prequels to the Stieg Larsson book were released in May and September
2009, also not long before our observation window. The slowest-moving books were also adapted
into movies, but in contrast these were released years before our observation period (the latest in
2001) and likely played little role in their diffusion in 2009. (Anobii is especially popular in Italy,
and so we link the explanation of the results to the cultural landscape in that country.)

This analysis is corroborated by Google Trends data,8 which give average Trends score during
the observation period of 29.8, 14.5, and 2.7 for the fastest books and 1.0, 0.2, 0.06, and 0.04 for
the slowest books. Note that the seven books all have comparable popularity in Anobii in the
observation window. This suggests that the fast-moving books are fast because social interest,
likely driven by external news sources, allowed them to ignore the network structure. In contrast
slow-moving books instead used the social network’s edges to propagate via word-of-mouth.

5 CONCLUSION

Usually distances on a network are measured between individual nodes. In this article, we define
the Node Vector Distance problem, which is to quantify the distance between two vectors of node
weights on a network. We show that distances between groups of nodes can be meaningfully de-
fined, and that in fact such distances have already appeared implicitly in a wide range of problems
in network science. We present a broad discussion of the problem that includes its applications,
solution approaches, and a characterization of how a variety of metrics differ.

We outline a few broad approaches to solving the NVD problem: generalizations of the Euclidean
distance, shortest path-based distances, spectral approaches, and adaptations of common computer
science problems or metrics related to NVD. The classification here is meant as a guide to help
show different ways in which such metrics can be motivated. We would not be surprised if other
approaches can be taken that do not fit any of our four categories. For example, we envision that
new information-theoretic network distance measures could appear in the near future.

In our experiments, we see how a number of metrics compare with the intuitive expectations
of a distance measure. For instance, most metrics here rise monotonically with chain length when
comparing node vectors at opposite ends of a chain network. The metrics also show correlations
with the infectiousness parameter in epidemic models.

Node vector distances have important and overlooked applications in network science. In this
review, we sample just a few of these applications, showing how measures of distances between
groups of nodes are useful in diverse problem areas that include computer vision, viral marketing,
epidemiology, and economics. Given how diverse these applications are, it is very likely that many
other problems in network science could be usefully posed in terms of distance metrics of the kind
we describe here.

We conclude by briefly describing possible directions for future research. These fall outside the
scope of this article, but could be fruitful avenues for further work:

• Deeper explorations of the measures we sketched here, such as discrete pursuit-evasion
games, the KL-divergence, and string edit distances;

8https://trends.google.com/trends/explore?date=2009-09-11%202009-12-24&geo=IT&q=%22La%20regina%20dei%20castell
%20di%20carta%22,%22Harry%20Potter%20e%20il%20principe%20mezzosangue%22,%22Fight%20Club%22,%22La%20gita%
20a%20Tindari%22,%22novecento%20baricco%22 and https://trends.google.com/trends/explore?date=2009-09-11%202009-
12-24&geo=IT&q=%22Harry%20Potter%20e%20il%20principe%20mezzosangue%22,%22il%20ladro%20di%20merendine%22,
%22siddharta%20hesse%22.
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• Development of new measures, such as adaptations of the cosine or correlation distances
in analogy to our adaptation of the Euclidean distance;

• Relaxing the condition that the network topology is fixed. Many real world networks evolve
over time, and NVD metrics could be generalized to account for this evolution;

• Exploring the statistical properties of NVD metrics. For some NVD metrics, such as those in
the spectral class, it may be possible to find closed-form descriptions of their distributional
properties. For others, bootstrapping methods may provide this information.

In particular, we look forward to applications of NVD metrics to new use cases, such as to study
cascading failures or metabolic networks. As the number of applications grows, meta-analyses
could provide intuition into how NVD metrics perform and how best to match the characteristics of
the metric with the network it is applied to. For instance, it may be that spectral metrics are natural
for networks with diffusion-like dynamics, while shortest path metrics may be more appropriate
in cases where the dynamics involve strategic actions by agents. We believe such applications, and
the other directions above, would bring insight to myriad processes on networked systems.
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