
Quantifying Ideological Polarization on a Network
Using Generalized Euclidean Distance

Marilena Hohmann,1,† Karel Devriendt,2,3,† Michele Coscia4,∗,†

1Copenhagen Center for Social Data Science, University of Copenhagen,
Øster Farimagsgade 5, Copenhagen, DK

2Mathematical Institute, University of Oxford, Woodstock Road, Oxford, UK
3Alan Turing Institute, Euston Road 96, London, UK

4CS Department, IT University of Copenhagen, Rued Langgaards Vej 7, Copenhagen, DK

∗To whom correspondence should be addressed; E-mail: mcos@itu.dk.
†Author contributed equally to the work.

Teaser. A measure for estimating ideological divergence in social networks allows to study

polarization.

An intensely debated topic is whether political polarization on social media is

on the rise. We can investigate this question only if we can quantify polariza-

tion, by taking into account how extreme the opinions of the people are, how

much they organize into echo chambers, and how these echo chambers orga-

nize in the network. Current polarization estimates are insensitive to at least

one of these factors: they cannot conclusively clarify the opening question.

Here, we propose a measure of ideological polarization which can capture the

factors we listed. The measure is based on the Generalized Euclidean (GE)
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distance, which estimates the distance between two vectors on a network, e.g.,

representing people’s opinion. This measure can fill the methodological gap

left by the state of the art, and leads to useful insights when applied to real-

world debates happening on social media and to data from the US Congress.

Introduction

Despite a multitude of studies of polarization on social media (1–3), it remains disputed whether

political polarization in digital public spaces is on the rise. Many analyses conclude that polar-

ization is rapidly advancing (4–8), while others question this interpretation (9, 10). The timeli-

ness and relevance of this issue warrants a closer look at how these claims are made, and raises

an important question: how can we accurately quantify the level of polarization of a social

system?

The political science literature commonly distinguishes between two types of polarization:

ideological and affective polarization (11, 12). Ideological polarization refers to increasing ide-

ological divergence and a reduced dialogue among individuals with differing views (13–15).

Affective polarization describes in-group favoritism and out-group hostility, and it is thus con-

cerned with the affective attitude towards others depending on their opinions (12, 13, 16). Al-

though the two types of polarization can be mutually reinforcing (17–19), ideological polariza-

tion and affective polarization are distinct concepts, both in terms of theory as well as empirical

measurement (11, 12). While the measure of ideological polarization relies on data about the

opinions of people, affective polarization also requires information about the valence of their

relationships (20–22).

In this paper, we focus on ideological polarization in social networks – hereafter, when-

ever we do not qualify the term “polarization” we refer to ideological polarization. As outlined

above, ideological polarization refers to increasing ideological divergence on the one hand, and
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increasing reluctance to engage with diverging views on the other hand (13–15, 23). From this

conceptual understanding, we derive two components of ideological polarization in social net-

works and an interplay between the two: a social network is more polarized than another if the

opinions of its members diverge strongly (opinion component), if people with similar opinions

cluster with each other in communities (structural component), and if these communities tend to

organize themselves in an ideological spectrum rather than engaging with all other communities

(mesoscale interplay of opinion and structure).

Since current network-based measures can only partially capture these components, we

propose a new measure of ideological polarization. Our measure is based on a Generalized

Euclidean (GE) distance measure (24), and it estimates how much effort it would take to travel

from one opinion to another in the network.

The literature has advanced numerous ways to estimate ideological polarization which we

briefly review here. Some methods consider exclusively opinions (25) or reduce the complexity

of the structure (26), which we think does not allow to properly capture what we understand

as polarization. Other approaches rely on local network measures to evaluate the structure of

interactions in a network (27–29). The assortativity coefficient, for instance, quantifies to what

extent individuals are directly linked to like-minded others (30–32). Similarly, there are meth-

ods which assess the average opinion of the direct neighbors of an individual (33,34). However,

local measures are myopic to the overall structure, and would return the same estimations even

if opinions are distributed in radically different mesoscale structures such as communities (35).

Alternative methods explicitly divide the network into two communities to determine how

well they are separated from each other (36–41). While these measures can account for the

network structure, a two-community partition implies an expectation of polarization that might

not exist. Methods that avoid the partition phase (42) provide node-dependent estimates, and it

is unclear how to summarize them for the whole network.
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Another approach builds on the opinion formation model proposed by Friedkin and Johnsen

(43). This measure assumes that each individual has both an internal opinion, and an expressed

opinion which is determined by their own internal opinion as well as the surrounding opinions

in the social network (44, 45). However, it is questionable whether individuals have stable

internal opinions on a political issue since public opinion research suggests that individual-

level issue opinions are often inconsistent and volatile (46–48). Apart from these conceptual

considerations, this approach entails a practical problem: social media data can only capture

people’s expressed opinions, but not their internal opinions on an issue (49). Our approach

sidesteps this issue by not requiring to know the internal opinion of an individual.

Finally, one could use graph neural networks (50), but these techniques normally provide a

simple classification of whether a structure is polarized rather than quantifying the polarization

level.

Our approach overcomes the aforementioned issues by using data available on social media:

the people’s expressed opinions and their social relationships. The former is determined based

on social media users’ sharing behavior (34, 51), the latter by downloading their connections

such as, e.g., follower relationships on Twitter. We estimate the Generalized Euclidean distance

(24, 52) between two opposing opinions across all the edges of the network. By doing so, we

avoid using a local approach and we do not assume a community structure by default.

In the results section, we demonstrate how our approach is the only alternative we found

that is sensitive to the two components of ideological polarization outlined above, as well as

their interplay. Moreover, we show that our measure allows us to make useful inferences about

real-world polarized systems such as political debates on Twitter or voting patterns in the US

House of Representatives.

4



Polarization
Low High

Opinion

(a)

(b)

(c)

0

200

400

600

800

1000

1200

-1 -0.5 0 0.5 1
#
 U

s
e
rs

-1 -0.5 0 0.5 1

Figure 1: The two components of polarization in a network and their interplay. (a) Opinion
component: plots show the number of people (y axis) with a given opinion value (x axis and bar
color). (b) Structural component: people are nodes, connected if they are interacting with each
other. Node color represents the opinion (< 0 blue, > 0 red), edge color the average opinion
of the two connected nodes. One community on the left, eight communities on the right. (c)
Opinion-structural interplay: same legend as (b). All communities equally interconnected on
the left, each community only connected to its most similar opinion community on the right.

Methods

Definition

Based on the existing literature on ideological polarization, we define two components of po-

larization and their interplay (Figure 1):

• Opinion component (Figure 1(a)): Traditional political science studies of ideological po-

larization consider if and how people’s ideological leanings diverge (11, 14, 15): if opin-

ions cluster in the moderate center, polarization is low (example on the left). If they
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instead disperse towards the extremes, polarization is high (example on the right).

• Structural component (Figure 1(b)): More recent approaches have emphasized the role of

social connections, and especially homophily, i.e., the connections between like-minded

individuals (23, 53–56). If there is no community structure, then there is no opinion ho-

mophily and each individual is connected and therefore exposed to many different views.

In this case, polarization is low (example on the left). However, if there are clearly sepa-

rated communities, individuals are only exposed to the opinions within their community,

but they are not directly exposed to other opinions and polarization is therefore high (ex-

ample on the right).

• Mesolevel organization of the opinion-structural interplay (Figure 1(c)): Opinion and

network structure have largely been viewed as separate indicators of polarization. To

integrate the two strands of the literature into a unified definition, we propose to also

consider the interplay between the two components. We understand this interplay as

follows: the same opinions and the same communities can give rise to different levels

of polarization depending on the mesolevel organization of the system. Communities

that can freely interlink regardless of their opinions indicate a lower level of polarization

(example on the left) than if communities organize in progressively more extreme echo

chambers (example on the right).

Since ideological polarization has previously been described both in terms of opinions and

network structure, we consider these two components to be distinct, yet related aspects of polar-

ization. This view is supported by some of the real-world examples we examine as we can show

that opinion and structure are correlated in the Twitter networks we analyze (see Supplementary

Materials Section 8). We therefore argue that it is important for a measure of polarization to

consistently capture the two components and their interplay in a single measure.
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Formulation

We refer to our polarization measure as δG,o. The measure requires two inputs: the graph

structure G and a vector of opinions o. δG,o takes values from 0, which implies no polarization

at all, to an arbitrary positive number. The higher the value, the more polarized the network is.

The first parameter is a simple graph G = (V,E), with V being the set of nodes and E ⊆

V × V the set of connections, i.e., node pairs (i, j) with i, j ∈ V . For simplicity, we assume

edges in E to be unweighted and undirected ((i, j) = (j, i)), but our approach can consider

edge weights. There are a few mandatory requirements on G. G must not contain self-loops –

edges connecting a node with itself. It must also be connected, i.e., there must be at least one

path between any two nodes in the graph. The polarization δG,o cannot be estimated if these

conditions are not satisfied.

The second parameter is the vector of opinions o. This vector o must have length |V |,

i.e., record a single value per node. We impose a convention on o: the opinion values must be

bounded between −1 (the most extreme opinion on one side) and +1 (the most extreme opinion

on the other side). In such a vector, 0 represents perfect neutrality between the two opinions. In

real-world US politics data, −1 could be an extreme Democrat and +1 an extreme Republican,

with 0 as perfect independents.

δG,o is based on a solution (24) to the node vector distance problem (57). In GE, one can

use the pseudoinverse Laplacian to estimate the effective resistance (58) between two arbitrary

vectors of length |V | recording a variable per node of the network. We recall that the Laplacian

matrix is L = D−A, with A being the adjacency matrix of G and D being the diagonal matrix

containing the degrees of the nodes of G. Thus:

Lij =


di if i = j

−1 if (i, j) ∈ E

0 otherwise.
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Figure 2: Difference between Generalized and plain Euclidean. We start from three vectors
a, b, c in a 3D space x, y, z. The blue arrow points at an Euclidean space, with labeled dots
showing the positions of vectors a, b, c in independent dimensions x, y, z. The yellow arrow
points to an x, y, z space defined on graph G, and the node color represents the values for
vectors a, b, c (red equals to 1, gray equals to zero).

To estimate the effective resistance we need to invert L, but L is singular and therefore

cannot be inverted. For this reason, we take the Moore-Penrose pseudoinverse of L, symbolized

as L†. Then, for two arbitrary node vectors a and b:

δG,a,b =
√
(a− b)TL†(a− b).

Previous work shows that this formula gives a good notion of distance between vectors a

and b on a network (24, 57). Specifically, it can recover the infection and healing parameters

in a Susceptible-Infected-Susceptible (SIS) or Susceptible-Infected-Recovered (SIR) model by

comparing two temporal snapshots of an epidemic – a more infectious disease with faster re-

covery covers more space across a social network in the same amount of time.

Figure 2 shows this intuition in the simplest possible scenario. We have three 3D vectors

a = (1, 0, 0), b = (0, 1, 0), and c = (0, 0, 1). We use x, y, and z to refer to the three spatial

dimensions. In the traditional Euclidean case – following the blue arrow –, the three spatial

dimensions are uncorrelated, and thus moving an equal amount in each direction contributes
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equally to the distance measures. Thus a is equidistant from b and c – at a distance of
√
2.

However, we can use a graph G to express relationships between the dimensions as we do

if we follow the yellow arrow in the figure. In that case, intuition tells us that b is closer to a

than c, as the nodes with value 1 are two steps away in c and only one step away in b. In fact,

δG,a,b =
√
1 and δG,a,c =

√
2.

To use GE for the purpose of estimating polarization, we need to split the vector o in two

vectors: o+ and o−. o+ contains all positive opinions and zero otherwise; o− contains the

absolute value of all negative opinions and zero otherwise. Once we do that, our δG,o measure

of polarization becomes:

δG,o =
√

(o+ − o−)TL†(o+ − o−).

The unit of our measure is the step or, to be more precise, its square root. This is the same

unit as the one used by, e.g., shortest paths: if one needs to cross five edges to go from node i to

node j, then i and j are five steps away from each other. In practice, one can interpret δG,o as the

average “distance” between randomly sampled nodes in o+ and o−, weighted by how strongly

these nodes hold their opinion (e.g., the distance between two nodes with opinions +1 and −1

is weighted higher than if the nodes had opinions −0.1 and +0.1). The units of this expected

distance are “steps” and, as further discussed in the Analytical Approach section of the main

paper and Supplementary Materials Section 4, the notion of distance in this interpretation is the

so-called effective resistance.

We can see how δG,o considers all the factors we outlined in the previous section. The more

well-separated the communities are – and the more they are organized at the mesolevel in an

opinion spectrum – the more steps are necessary to traverse the network. The larger the opinion

difference o+ − o−, the more these steps are weighted.
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Results

We compare δG,o only with measures accepting the same input and providing the same output.

Hence, methods working with signed networks (20–22, 59), or with expressed and internal

opinions (44, 45, 49), or providing a simpler classification output in form of a yes/no value (50)

are beyond the scope of this paper.

We specifically look at: opinion assortativity (ρG,o) (32), Random Walk Controversy (RWCG)

(37), density plots of opinion against average neighbor opinion (33); and boxplots of opinion

against average opinion of the set of influenced nodes in a SIR model (34). The Supplementary

Materials Section 1 includes details of how these measures are calculated.

Synthetic Data

We now show how δG,o is sensitive to the components of our definition of polarization, while

the alternative ways of estimating polarization are insensitive to at least one of those factors.

We follow the rows in Figure 1 one by one and show how the δG,o values and the alternative

measures evolve over those dimensions. All numeric values reported in the figures that follow

are the averages of 25 independent runs. All pairs of δG,o scores presented in the main text are

statistically different, with the minimum z-score of the difference between any of the values

shown being 3.4 – corresponding to a one-tailed p < 0.001. The density and box plots are taken

from one representative run. The details on how we generate the various Gs and os, as well as

the relevant parameters, are provided in the Analytical Approach section.

Supplementary Materials Sections 2 and 3 contain additional tests on the behavior of δG,o

including its values for some interesting edge cases.
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Figure 3: The opinion component of polarization. Each row (top to bottom): distribution
of o values – number of nodes (y axis) with a given opinion (x axis and bar color) –; values
of δG,o, ρG,o, and RWCG with their standard deviations across 25 independent runs; density
maps of opinions (x axis) and average neighbor opinion (y axis); boxplots of seed opinion (x
axis) and average opinion of the influenced set after a SIR propagation (y axis). The boxplots
show the average for the middle tick, plus/minus its standard error for the top/bottom ticks.
In the bottom two rows, color (from bright to dark) is used proportionally to the number of
observations within the data point. Changes in the distribution of opinions lead to progressively
increasing polarization through columns (a-e). The graph G (not depicted) has no communities.

The Opinion Component

In Figure 3, we start with a network without a community structure, in which the opinions

distribute normally in the opinion spectrum (leftmost plot), and randomly over the network.

This is a state of low polarization. As we move from Figure 3(a) to Figure 3(e), we create

more and more polarization in the opinion vector o, keeping G as a random graph without
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communities. The second row shows that the δG,o values grow by a factor of almost four,

implying a significant increase in polarization. This corresponds to our intuition about the

opinion component of polarization.

Neither assortativity (ρG,o, third row) nor RWCG (fourth row) are able to capture this

change. All their values are not statistically different from each other. This is because a random

graph has zero expected assortativity (see Supplementary Materials Section 1), while RWCG

must bisect the network into two communities, regardless of how extreme the opinion difference

is.

The density maps of the average neighbor opinion (fifth row) and the average influenced set

opinion (sixth row) are able to capture the differences in the opinion value distributions.

The Structural Component

Next, in Figure 4, we take the most polarized opinion vector o from Figure 3 – the distribution

in the top row of Figure 3(e) – and we investigate the structural component of polarization. We

create eight communities in the network, each of which has a high degree of opinion homophily.

As we move from Figure 4(a) to Figure 4(e), we change the connection probabilities of the nodes

inside the network. We decrease pout, the probability that a node will connect to a node in a

different community. We then increase pin – the probability of a node connecting to a node in

the same community so that all networks in Figure 4 have the same expected number of edges.

The larger the difference between pout and pin, the higher the polarization, driven by the

assortative communities in the structural component. We see that the values of δG,o (second

row) follow our expectation, growing by a factor of around five. Thus, we can conclude that

the measure is also sensitive to the structural component of polarization, not only to the opinion

component.

Assortativity (ρG,o, third row) is able to distinguish between the five networks, but it is
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Figure 4: The structural component of polarization. Same legend as Figure 3. Structural
changes lead to progressively increasing polarization through columns (a-e). pout values: (a)
0.0085, (b) 0.0024, (c) 0.0012, (d) 0.0006, (e) 0.0003.

overly sensitive to relatively small initial changes to the random structure, downplaying the

subsequent emergence of strong communities. The difference between Figure 4(a) and Figure

4(b) is more than three times as large as the difference between Figure 4(b) and Figure 4(e). This

shows that, while assortativity can catch structural separation, it makes it difficult to distinguish

weak communities from strong ones. The same can be said for the density maps of the average

neighbor opinion (fifth row) and the average influenced set opinion (sixth row).

RWCG (fourth row) picks up structural separation well.
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Figure 5: The opinion-structural interplay. Same legend as Figure 3. Changes in the opinion-
structural interplay lead to progressively increasing polarization through columns (a-e). Each
community in the network is connected to its (a) 7, (b) 5, (c) 4, (d) 3 and (e) 2 closest commu-
nities in terms of average opinion.

The Opinion-Structural Interplay

Finally, in Figure 5 we observe what happens when we modify the opinion-structural interplay

at the mesolevel. To do so, we set some pout values to zero. Specifically, each community

gets progressively more and more isolated from the rest of the network as they preferentially

disconnect from communities with a larger opinion difference. This mesoscale structure is

something we observe empirically, as we show later when looking at data from actual debates

on Twitter.

The network in Figure 5(a) is roughly equivalent to the one in Figure 4(e), where all com-

munities connect to each other, and where the opinion distribution has values clustered around
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−1 and +1. Starting from Figure 5(b) to Figure 5(e), we lower the number of connected neigh-

boring communities from five to two.

Again, moving from Figure 5(a) to Figure 5(e) implies increasing levels of polarization, as

it gets progressively harder for people to be exposed to differing points of view. This is reflected

by a three-fold increase of the value of δG,o. The large difference for each column shows that

the measure is sensitive to the structural changes at the mesolevel.

Assortativity (ρG,o, third row) and RWCG (fourth row) are not particularly sensitive to the

mesolevel organization of the network – certainly not as much as they are to the structural

component alone. Assortativity only changes at the second significant digit and always scores

values near the maximum of +1. On the other hand, RWCG is prone to misclassification, as

the standard deviations show that there is an overlap between the higher bound of one level

(for instance, Figure 5(a)) and the lower bound of the following one (in this case, Figure 5(b)).

However, both measures do a reasonable job at capturing the mesolevel organization of the

opinion-structural interplay.

The density maps of the average neighbor opinion are indistinguishable from each other

(fifth row). This is because they exclusively look at local information, and they are blind to the

mesolevel organization of the network. The average influenced set opinion (sixth row) could in

principle capture the mesolevel organization as it is not bound by looking at direct neighbors,

but allows the influenced set to percolate through the structure. However, the communities are

too large and too well-separated for this to happen in practice, and the differences between each

plot from Figure 5(a) to Figure 5(e) are minimal.

From Figures 3, 4, and 5 we can conclude that δG,o is the only measure sensitive enough

to recognize each further example as a part of a continuum of increasing levels of polarization.

δG,o captures the opinion and structural components, as well as their interplay happening at the

mesolevel of the network. We support this statement by showing, in Supplementary Materi-
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als Section 3, how δG,o varies smoothly across all the parameter values used to generate our

synthetic data.

The alternative measures lack sensitivity to at least one aspect of polarization. Assortativity

and RWCG are blind to the opinion component and overemphasize the structural component

over the opinion-structural interplay, while density maps of the average neighbor opinion and

the average influenced set opinion in a SIR propagation do not capture the opinion-structural

interplay at the mesolevel, and overemphasize the opinion component over the structural one.

Applications

We now turn to looking at real-world networks to show the insights one could gather from

using δG,o. We compare different political debates happening on Twitter including the 2020 US

presidential election, and the evolution of US representatives over time.

Twitter Debates

Figure 6 shows examples of three debates happening on Twitter in the mid 2010s. The node

color reflects ideological leaning on a US-focused liberal (blue) to conservative (red) scale.

These center on three topics in the US political context which had been discussed by Twitter

users between 2015 and 2016: the US Medicare reform known as Obamacare, gun control, and

abortion.

δG,o shows moderate levels of polarization with values between 9 and 17. The least polarized

debate is about Obamacare, while the abortion debate is the most polarized.

We call these levels of polarization “moderate” for several reasons. First, most opinions in

the Obamacare network are uniformly distributed over the entire spectrum, leaving structure

as the main source of polarization. The gun control network has more diverging and extreme

opinions, but the distribution of ideological leanings is heavily skewed to the left, reducing
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Figure 6: The Twitter debate networks. From top to bottom row: network topology, users as
nodes, interactions as edges, opinions as colors of both nodes and edges; opinion distribution,
number of users (y axis) with a given opinion (x axis and bar color); δG,o score.

polarization – polarization is low if most people agree on a position, even if it is a relatively

extreme one. In this case, the vast majority of users are located left of center and, as a conse-

quence, the δG,o score is reduced. The abortion debate is the most polarized because it has both

high opinion divergence and roughly equally sized clusters. The score is still moderate because

there is a high number of connections between the clusters, showing a level of communication

between the faction that reduces overall polarization – 3% of all the edges of the network are

between a “red” and a “blue” node, while this figure is below 2% for both the Obamacare and

gun control debates.

Note that the abortion network actually has a mesoscale organization with subcommunities

inside the main two opposing communities, as we detect via a stochastic blockmodel commu-

nity discovery in Supplementary Materials Section 8. This provides support to our definition of

polarization that includes an opinion-structural mesoscale interplay.
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Figure 7: The Twitter election networks. From top to bottom row: network topology, users
as nodes, interactions as edges, opinions as colors of both nodes and edges; distribution of
ideological leanings, number of users (y axis) with a given opinion (x axis and bar color); δG,o

score.

Note that δG,o is scale invariant as we show in Supplementary Material Section 2. It follows

that differences in the polarization scores cannot be ascribed simply to the size of the network

in terms of number of nodes.

Twitter Elections

Figure 7 shows the progression of the US presidential election in 2020. The networks center on

the Vice-Presidential debate (October 7th, 2020), the second presidential debate (October 22nd,

2020), and election day (November 3rd, 2020).

δG,o shows high levels of polarization for the second debate and the VP debate. Both net-

works contain two extremely separated clusters with fewer than 1% of edges between them.

Moreover, the opinion values are distributed towards the extremes. This explains why the scores

are higher than the ones we show in Figure 6. During the 2020 election, users held opinions
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farther from each other, and stopped interacting with disagreeing users.

Election day has significantly lower polarization due to a noticeable spike in the neutral

portion of the opinion spectrum. This is caused by the necessity of sharing raw election result

updates, which come from neutral and factual sources. In fact, the most shared domain during

that period is from Associated Press, which has a moderate opinion value of −0.13 and is

responsible for the noticeable peak in the opinion distribution. This suggests caution when

estimating polarization scores in a context where people are both discussing opinions and hard

facts at the same time.

US House of Representatives

We build the networks using voting records from the US House of Representatives (60). We

connect two congressmen if they cast the same vote on the same bill a significant number of

times – the Analytical Approach section provides more details. The o vector is their DW-

NOMINATE score (61), an established way of quantifying their political leaning. We do not

consider data from the Senate because senators cannot co-vote with members of the House:

including them would create a disconnected network. We observe comparatively low δG,o values

for two reasons. First, even though G has two opposing dense communities, the network has a

small diameter and average path length of approximately 1.5− 1.95 (see Supplementary Table

4). This means that extreme congressmen in either community are separated by less than two

steps on average, leading to low structural separation. Second, depending on the congress, 67%

to 93% of the DW-NOMINATE scores are between −0.5 and 0.5, which suggests low opinion

divergence as well, because the opinion values predominantly cover a smaller portion of the

available [−1,+1] interval.

Notwithstanding these characteristics, the US Congress has been viewed as an example of

polarization escalation (62). Figure 8 supports this view. Up until the 98th Congress (1983-
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Figure 8: Polarization in the US House of Representatives. From top to bottom row: network
topology, congressmen as nodes, co-voting relationships as edges, opinions as colors of both
nodes and edges; opinion distribution, number of congressmen (y axis) with a given opinion (x
axis and bar color); δG,o score. For the network and opinion rows, we show six examples of the
36 networks analyzed.

1985), polarization was almost non-existent, with δG,o scores around 1. Ever since the 98th

Congress, δG,o scores have been on the rise to a maximum of more than 8.

This can be considered a high score, given the caveats we presented about how G and o are

built. We should not compare these scores directly with the ones obtained from Twitter since

the way of estimating o is vastly different. To contextualize the score, we can pick extreme

Democrats and Republicans in the 116th Congress (2019-2021) and calculate the score we

would get if they represented the entirety of their parties. If we perform this experiment using

James McGovern for Democrats and Matt Gaetz for Republicans, we get a score of 14. This can

be considered close to the maximum, as McGovern is part of the most left-leaning caucus of the

House (the Congressional Progressive Caucus) and Gaetz is part of the most right-leaning one

(the Freedom Caucus). They both have extreme DW-NOMINATE scores as well. On the other

hand, the most moderate possible pair in the 116th Congress according to DW-NOMINATE is

Ben McAdams and Brian Fitzpatrick who were members of the centrist caucuses Blue Dog and
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Main Street Partnership. If they were composing the entirety of their parties, the polarization

score would be a mere 0.2.

According to our measure, the most polarized House in the post-WWII history was the

113th (2013-2015), which coincided with the beginning of Barack Obama’s second term, plus

a debt-ceiling crisis following the full application of the Affordable Care Act (Obamacare), the

2014 Russo-Ukrainian conflict, strong debates about immigration reforms, and a controversial

escalation of US military action in Syria and Iraq against ISIS, among other things.

Discussion

In this paper we tackled the issue of estimating the level of polarization in a social network. We

ask how polarized a system is given the set of social connections and the opinions of all the

individuals in the network. We decompose the polarization question in two main components

and an interplay factor: how varied the opinions are (opinion component), how assortative the

communities are (structural component), and how communities organize at the mesolevel of the

network (opinion-structural interplay).

Intuitively, our estimate is based on the network distance between all pairs of disagreeing

individuals, weighted by how strongly they hold their opinions. We show that our measurement

is sensitive to all factors of polarization, a feat that is not achieved by the current state-of-the-art

measures for polarization. We also show that the measure is able to unveil interesting insights

in a number of real-world networks spanning from debates on Twitter to co-voting patterns in

the US House of Representatives.

This is the starting point of a promising research path. However, there are a number of

caveats and limitations that can be amended in future works. In general, some caution is nec-

essary when taking the δG,o estimations at face value. If one wants to talk about ideological

polarization at an entire nation’s level, then they cannot rely on social media data like we do
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in this paper. The social networks used here are a sample of the entire structure and, even

if they considered the entirety of Twitter, it would still be a non-representative sample of the

population.

If the first caveat focuses on how G is built, we also need caution when it comes to how

o is estimated. δG,o scores are not compatible across networks if the ways to estimate o in

different networks vary, as is the case between the Twitter and the US House of Representatives

networks.

In addition, we focus mainly on measuring and summarizing the opinion and structural

component and their interplay in a single, consistent measure. Another relevant question for

future work may be to determine how much each component contributes to the overall level

of polarization in a network. In Supplementary Materials Section 8, we show how to estimate

the opinion component and the structural component on their own, as well as the strength of

their correlation. A decomposition of δG,o into individual components might be interesting

to understand how their importance has developed over time, and to design evidence-based

strategies that help reduce polarization on social media.

Another limitation is that δG,o is only apt at describing ideological polarization, that is the

extent to which opinions get farther away towards extremism and people with different opinions

tend to isolate from each other. Affective polarization – which pertains to how people with

different opinions interact with each other (11) – is also of great interest as it is the one truly

affecting the quality of online discourse. One way we could approach affective polarization

is via network co-variance (52) and/or correlations (63), since affective polarization should

manifest as a correlation on the edges. Specifically, one would look whether the sentiment of

a relationship is correlated with the opinion difference between the two individuals. These two

approaches share commonalities with our δG,o measure – for instance, they all rely on effective

resistance –, showing how future work can expect to develop a coherent framework able to
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describe both ideological and affective polarization in consistent and comparable terms.

A further limitation – common in the literature – is that our measure assumes that people

organize themselves in a one-dimensional opinion space with only two poles. This describes

somewhat well the US political environment, and debates with a clear “for” and “against” posi-

tion. However, it has two drawbacks.

First, it is grossly underpowered for a multi-pole scenario such as the multi-party politi-

cal systems common in many European countries. Multiple parties does not necessarily imply

that there is a corresponding ideology dimension per party, nevertheless creating a measure

able to capture multiple ideological scales at the same time could be useful to avoid flattening

everything on a two-pole system. There are some polarization-related studies for multi-party

systems (64, 65), but they do not quite capture the objective of this paper: estimating a single

numeric score for a given G-o pair. Instead, they return a much more complex output describing

the likelihood of two nodes to connect given their characteristics – data that might be unavail-

able. We can explore dimensionality reduction techniques to allow δG,o to tackle a scenario with

multiple different opinions at the same time, rather than just two. We outline one suggestion in

Supplementary Materials Section 6.

Second, by analyzing a debate at a time we disregard the role of ideological consistency

(13, 66–69). We can expect, e.g., a person in favor of Obamacare to also be in favor of gun

control and abortion rights. There are two ways to tackle ideological consistency. The first

would be to use a multilayer network, in which each layer is a debate. Then one can apply the

multilayer version of δG,o (70) and get a polarization score that can be strengthened or weakened

depending on the level of ideological consistency. Alternatively, one can calculate the network

correlation between the different opinions of the individuals (63) to understand how consistent

they are.

Our measure of polarization shares a drawback with all other data-driven approaches to
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polarization: if the data estimating the opinion of the individuals is inaccurate, the measure will

provide inaccurate results. However, in Supplementary Material Section 7 we show how it is

possible find upper and lower bounds of a polarization estimate if one knows how uncertain the

opinion measurements are.

Other limitations involve the limited scalability of our approach, which is relatively memory-

hungry and thus unable to tackle networks with millions of nodes. We plan to fix this issue in

future work by employing Laplacian solvers (71, 72). We can also work on building a better

intuition for the units of our measure, and devise a way to normalize δG,o so that it takes values

between, say, 0 and 1.

Analytical Approach

Interpretation of δG,o

A convenient mental image to aid the interpretation of δG,o is the percolation of the opinions in

a network, which can be modeled using discrete heat diffusion techniques. We can consider o as

the temperature reading (opinion) of |V | thermometers, each located in a node. δG,o is directly

proportional to the (square root of the) time it takes for heat to diffuse across the network and

bring it to equilibrium.

Figure 9 shows a graphical depiction of the diffusion process on a grid graph. The starting

condition has some nodes in opposite corners at temperature −1 and +1. The polarization of

this initial condition is δG,o ∼ 2.95 and we therefore expect it to take between 8 and 9 units

of time for the system to converge to the average temperature (opinion), which is what we see

if we run the simulation in the figure. For the simulation, we solve the discrete heat equation
do

dt
= −Lo to find the solution at each time t (73).

The relation between δ2G,o and time to convergence is not always as direct as in this example,

but in general we find that the polarization δG,o is directly proportional to the time it takes to
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Figure 9: Polarization as heat diffusion. The graphs (second row) represent the status of the
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reach equilibrium – defined as the time t when the standard deviation of the opinion vector

o(t) goes below some fixed low ϵ value. We confirm this in Supplementary Materials Section

4 by repeating the diffusion experiment on many input pairs G, o. In Supplementary Materials

Section 5 we further show how δG,o can be interpreted as a network version of the co-variance

between the o+ and o− vectors.

δG,o and Effective Resistance

δG,o also has a direct relationship with “effective resistance”, which is a robust way to measure

distances between two nodes in a network and reflects the “effective number of steps” between

two nodes (58). The effective resistance between two nodes i and j is denoted by ωij and

defined as

ωij := (ei − ej)
TL†(ei − ej),
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where ei is a vector with 1 at the ith entry and zeros otherwise. The effective resistance is

proportional to the average time it takes for a random walker to go from node i to node j, and

then back again to i. In other words, this tells us how easy it is to traverse the network and move

from one node to another, and back. Compared to the shortest-path distance, which measures

the length of the shortest path between two nodes, the effective resistance takes into account the

paths of all lengths and how they are interconnected.

To see why our measure of polarization is related to the effective resistance, let us consider

a special case. Suppose that o+ and o− are concentrated in two nodes, i and j respectively, and

zero otherwise. The polarization is then equal to

δG,o =
√
(o+i − o−j )

TL†(o+i − o−j ) =
√
ωij.

In other words, the larger the effective resistance between i and j, the larger the measured

polarization.

This interpretation in terms of effective resistances also holds for balanced opinion distribu-

tions. For a balanced opinion distribution, we assume that the total sum of the positive opinions

equals the sum of the negative opinions, e.g.
∑

o+i =
∑

o−i = 1 and
∑

oi = 0. This can be

trivially achieved by normalizing o+ and o− with their sums. Then we make use of the fact that

for any zero-sum vector x, with
∑

i xi = 0, the pseudoinverse Laplacian product can be written

in terms of the effective resistances as
∑

i,j xi(L
†)ijxj = −1

2

∑
i,j xiωijxj – this follows from

the definition of the effective resistance. Then:
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δG,o =
√

(o+ − o−)TL†(o+ − o−)

=

√∑
i,j

(o+i − o−i )(L
†)ij(o

+
j − o−j )

=

√
−1

2

∑
i,j

(o+i − o−i )ωij(o
+
j − o−j )

=

√√√√∑
i,j

o+i o
−
j ωij −

1

2

(∑
i,j

o+i o
+
j ωij +

∑
i,j

o−i o
−
j ωij

)
.

Since all values o+i are positive and sum to one, we can interpret this value as the probability

of sampling a random individual X+ with a positive opinion. The probability of each individual

is proportional to how extreme their opinion is, which is Pr[X+ = i] = o+i .

For instance, Alice and Bob are both in favour of gun control, so oA, oB > 0, but Alice

is “twice as extreme” in her opinion as Bob and thus oA = 2oB. When we select a random

individual (X+) in favour of gun control, we will select Alice twice as likely as Bob since we

get Pr[X+ = A] = 2Pr[X+ = B]. Similarly, we can consider a random individual X− with a

negative opinion based on the values o−i .

We can now formulate a probabilistic interpretation of the polarization δG,o:

δG,o =
√

E[ωX+X− ]− 1
2
E[ωX+X+ + ωX−X− ],

where the expectation operator E runs over the distribution over independent random vari-

ables X+, X−. This formula has the following interpretation: δG,o measures the degree to which

two individuals with conflicting opinions are more separated than two individuals with agree-

ing opinions. The polarization is thus the difference in distance between pairs of conflicting

individuals and pairs of agreeing individuals, where individuals are selected according to the

strength of their conviction. This shows that polarization is a relative measure that compares
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conflicting individuals with agreeing individuals.

This expression shows a possible generalization of δG,o: if we have any notion of distance d

between the nodes of a graph then we can define a polarization score as:

δG,o =
√
E[d(X+, X−)]− 1

2
E[d(X+, X+) + d(X−, X−)].

This distance d could for instance be the shortest path distance between nodes in a network,

the physical distance between individuals, or the travel time between locations.

Computational Complexity of δG,o

If one estimates δG,o’s formula naively, as we do in this paper, the most expensive part of the

framework is the calculation of L†, the pseudoinverse of the Laplacian. This requires to solve

the singular value decomposition problem for L. The cost is cubic, meaning that the algorithm

can scale in the worst case as O(|V |3), and hence it is inapplicable for networks larger than

around 104 nodes. However, we do not need to explicitly calculate L† to calculate δG,o. We can

use Laplacian solvers (71,72), which can calculate the L†(o+−o−) portion of δG,o in near-linear

time. The complexity would then be O(|V |n), with 1 < n < 2, allowing the method to scale to

much larger networks.

Synthetic Data Generation

For the experiments showing the intuition and motivation of δG,o, we rely on the generation of

synthetic graphs G and opinion vectors o.

Each G is generated using a simple stochastic blockmodel (SBM) (74). To generate a SBM

one needs to specify the number of nodes |V |, which we always set to 1, 000. The second

ingredient is the assignment of nodes to communities. In our case, we create eight communities,

each of the same size (125 nodes). The final two parameters are pin and pout, which regulate
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the probability of two nodes in the same community (pin) or in different communities (pout) to

connect to each other.

Each o is generated starting from a normal distribution of 500 values centered on 0 with a

standard deviation of 0.2. Then, in Figure 3, we progressively create more and more polarization

in the opinion distribution by shifting the average µ from 0 until 0.8, in 0.2 increments. We

replace each value ox higher than 1 as follows: ox = 1− (ox − 1). This ensures that all o values

are lower than or equal to 1. Finally, we set o = (o0, . . . , o500,−o0, . . . ,−o500) and sort it,

making it symmetric around 0 and of length 1, 000. Each community gets a continuous portion

of o, ensuring opinion homophily inside the community.

For Figure 3 we fix pin = pout = 0.0085. When pin = pout a SBM is equivalent to a

plain random Gn,p graph (75). In a Gn,p, each pair of nodes has the same probability of being

connected, regardless of the community affiliations of the two nodes and thus there are no

communities.

For Figure 4 we progressively decrease pout from 0.0085 to 0.0003, correspondingly in-

creasing pin to keep the expected number of edges constant.

For Figure 5 we set pout = 0 between the nodes belonging to specific pairs of communities,

increasing the other pin and pout accordingly to maintain the same expected number of edges.

Specifically, we only keep connections between communities belonging to neighboring portions

of the opinion spectrum o.

Data Collection

The gun control, abortion, and Obamacare networks were collected from Twitter. In all three

cases, we retrieve the tweets related to each topic. To do so, we use the tweet ids provided by

previous works (34), which follow the procedure outlined in the literature (76). From the tweets

we obtain a list of users involved in the debate. We create the network by collecting the 5,000
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most recent followers of each users, a cap that is imposed by Twitter’s rate limits.

We estimate the opinion of each user by looking at the URLs they share. Each domain

has an opinion score between −1 and +1, with the data coming from the fact-checking website

https://mediabiasfactcheck.com/. The scores are provided directly by the website,

placing each news source in a continuous −1 to +1 interval. The user’s opinion is the average

of all the URLs they have shared. This procedure is in line with the standard practice in the

literature (34).

These networks have been used for many studies in the past (38), but there might be differ-

ences in their topologies due to the dynamic nature of Twitter. The original data source only

provides tweet ids, not their content and no network information, as per Twitter’s terms of use.

As a result, we need to recollect tweets and relationships that were established when the debates

took place between 2015 and 2016. In the meantime, people might delete tweets, resulting in

a different estimation of o because the relative frequency of URLs shared by a user changes.

Moreover, users might follow/unfollow other users, or even delete their account entirely, chang-

ing the edge and node sets of G.

We follow the literature in using only tweets which link to (at least) one of the URLs with a

known opinion score. The dataset contains only users which have tweeted at least five times on

either topic.

We apply the same procedure to generate the US debate Twitter datasets – by collecting

the networks about the second presidential debate, the vice presidential debate, and election

day, for the 2020 election. This is based on tweet ids collected by the George Washington

University (77). Also in this case, we only use tweets which link to (at least) one of the URLs

with a known opinion score. Differently from above, we only consider users which have tweeted

at least three times (and not five).

For the US House of Representatives network, we collect roll call vote data from Vote-
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view.com (60). We connect two congressmen from the US House of Representatives following

the procedure obtained from the literature (78) – omitting votes from the Senate, as they would

create a disconnected component in the network.

In practice, we connect nodes if the two members agree with one another on a vote more

often than a specific Congress-dependent threshold. The threshold value is the number of agree-

ments in a specific Congress where the pair of members is more likely to be from the same party

than from opposing parties.

For most of the history of the US House of Representatives, one could find a significant

number of cross-party agreements, leading to well connected communities of Democrats and

Republicans. This has stopped being the case from the 98th Congress, although the two com-

munities are still part of a single connected component (otherwise we could not apply δG,o).

Note that, with this procedure, a few nodes are isolated as they did not participate in enough

votes to receive a connection, and thus they are dropped from the networks.
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58. D. J. Klein, M. Randić, Journal of mathematical chemistry 12, 81 (1993).

35



59. L. Akoglu, Proceedings of the International AAAI Conference on Web and Social Media

(2014), vol. 8, pp. 2–11.

60. J. B. Lewis, et al., https://voteview. com/ (accessed 25 February 2022) (2019).

61. K. T. Poole, H. Rosenthal, Congress: A political-economic history of roll call voting (Ox-

ford University Press on Demand, 2000).

62. Z. P. Neal, Social Networks 60, 103 (2020).

63. M. Coscia, Journal of Complex Networks 9, cnab036 (2021).

64. M. E. Del Valle, R. B. Bravo, International journal of communication 12, 21 (2018).

65. M. Esteve Del Valle, M. Broersma, A. Ponsioen, Social science computer review p.

0894439320987569 (2021).

66. D. Baldassarri, A. Gelman, American Journal of Sociology 114, 408 (2008).

67. A. Abramowitz, K. Saunders, The Forum (De Gruyter, 2005), vol. 3, pp. 1–22.

68. A. Abramowitz, The disappearing center: Engaged citizens, polarization, and American

democracy (Yale University Press, 2010).

69. C. Hare, K. T. Poole, Polity 46, 411 (2014).

70. M. Coscia, ACM Transactions on Knowledge Discovery from Data (TKDD) (2022).

71. N. K. Vishnoi, et al., Foundations and Trends® in Theoretical Computer Science 8, 1

(2013).

72. K. Deweese, Bridging the Theory-Practice Gap of Laplacian Linear Solvers (University of

California, Santa Barbara, 2018).

36



73. R. I. Kondor, J. Lafferty, Proceedings of the 19th international conference on machine

learning (2002), vol. 2002, pp. 315–322.

74. P. W. Holland, K. B. Laskey, S. Leinhardt, Social networks 5, 109 (1983).
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1 Alternative Measures

1.1 Assortativity

Assortativity is a way to quantify the extent to which nodes with similar values connect to

each other (31). The specific formula we use to estimate assortativity is the one developed by

Newman (30).

This measure is calculated by creating a matrix e. Each entry exy in the matrix contains the

fraction of the edges connecting two nodes in the network with values x and y of the measure of

interest. This can be considered as a probability of the edge existing, implying that
∑
xy

exy = 1.
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For simplicity, we also record the fraction of edges originating from a node with value x

(
∑
y

exy = ax) and the fraction of edges ending in a node with value y (
∑
x

exy = by). If a

network is undirected and unipartite, then ax = by.

The assortativity is thus the Pearson correlation coefficient of x and y, which is:

ρG,o =

∑
xy

xy(exy − axby)

σaσb

,

where σa and σb are the standard deviations of the distributions ax and by. In this formula-

tion, one needs the topology of G and the node values from the opinion vector o to build the

matrix e (and, as a consequence, ax and by).

Just like the Pearson correlation coefficient, this measure ranges from −1 (perfect disassor-

tativity) to +1 (perfect assortativity).

It is not hard to see that assortativity cannot capture changes in the opinion component as

defined and shown in the main paper: Suppose we have a vector of opinions o. Any linear

change in o will generate the exact same assortativity value, provided that the values do not go

beyond the [−1,+1] interval. Halving all o values will generate the same assortativity value,

even though this should be recognized as a lower polarization.

Assortativity also gives diminishing returns in capturing the structural component. It is

linearly related to pout, the probability of nodes in a community to connect outside their com-

munity, but linear changes in pout have little effect for high pout and large effects for low pout –

as Figure S1 shows. Networks that score the medium assortativity value (ρG,o = 0.5, we show

a network with this value in the callout in the middle) are hardly distinguishable from networks

scoring the minimum value (ρG,o = 0.0, we show an example of a network in the callout on the

left). The regime in which networks have well-defined communities occupies a small fraction

of the assortativity’s domain.

In summary, assortativity can capture the alignment of opinions with the network struc-

2



0

0.2

0.4

0.6

0.8

1

00.0020.0040.0060.008

ρ
G

,o

pout
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examples of networks at a given value of ρG,o, specifically (left to right): 0, 0.5, 1.

ture although it progressively loses sensitivity as we have better-defined communities, and it is

wholly insensitive to the distribution of opinions.

1.2 Random Walk Controversy

Random Walk Controversy (RWCG) is a measure that assumes the network can be partitioned

into two opposing communities and then estimates the probability of a random walker to be

able to transition from one community to another (37). The first operation is to bisect the

graph into two communities. In the original paper, the authors use the METIS algorithm (79),

although one could use any community discovery algorithm that can take the number of desired

communities as input and that finds communities using a comparable definition as the one used

by METIS (80).

Let us assume that we now have two communities C1 and C2, which are disjoint sets of
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nodes (C1 ∩ C2 = ∅) that cover the entire node set of G (C1 ∪ C2 = V ). RWCG simulates a

number of random walks – by default 10 times the number of nodes in the network – and records

four probabilities: pC1,C2 , pC2,C1 , pC1,C1 , and pC2,C2 . In general, px,y records the probability for

a random walker to start in partition x and end in partition y. Half of the walkers start from

C1 and half from C2. The walk terminates when it visits any node from a 10% random sample

(from either side). Then:

RWCG = pC1,C1pC2,C2 − pC1,C2pC2,C1 .

This measure is equal to +1 when all random walkers stay in their starting community, and

equal to −1 when all random walkers end in the opposite community. A few things should be

noted here.

First, the bisection into communities can be largely suboptimal because it is independent

from the opinion vector o. If there are no clear-cut communities aligning themselves with o,

then RWCG’s estimation is necessarily wrong. One could skip the community discovery and

assign nodes to two communities according to whether their values in o are above or below 0. In

either case, the actual distribution of o’s values is irrelevant (it does not matter whether o values

cluster tightly around 0 or at the extremes), and thus this measure cannot capture the opinion

component by design, as we show in the main paper.

Second, the measure is not deterministic because it relies on a randomized simulation. One

could fix this issue by deciding a fixed random walk length l, then take Al – with A being the

stochastic adjacency matrix of G. The result is the probability of a random walk starting from

any node to reach any other node in l steps. Then one could estimate RWCG with the formula

above. In this case, RWCG would be exact and deterministic. However, we do not perform this

correction to stick with the original definition of RWCG, noting that one could get different

RWCG values even with the same G and o.

4



Finally, in the original paper (37), the authors define multiple measures of polarization.

Specifically, they also introduce versions using a random walk with restart, betweenness cen-

trality, a 2D node embedding, Boundary Connectivity (36), and Dipole Moment (26). We do

not investigate these variants as they are either highly correlated with RWCG, or suffering from

the same drawbacks about not considering the opinion distribution o.

1.3 Average Neighbor Opinion

In this approach, we estimate polarization by creating a density plot of opinions (33). For each

node i in the network, we record its value oi on the x axis. Then, the y axis value is derived

from i’s neighbor set Ni. Specifically, it is its average
∑
j∈Ni

oj/|Ni|.

The resulting density plot is then generated with a standard Kernel Density Estimation. A

network is polarized if most of the density of points is concentrated among the top right and/or

bottom left corners, implying that only nodes with similar values connect to each other.

As we show in the main paper, the issue with this approach is that it looks only at immediate

neighbors, whereas any mesoscale organization of the network is not captured.

1.4 Influenced Set Opinion

This approach also estimates polarization graphically (34). Each node is considered in turn as

the origin of a Susceptible-Infected-Recovered (SIR) epidemic event. In SIR, nodes start in a

Susceptible state. They transition to Infected with a certain rate β when one or more of their

neighbors are Infected. Finally, there is a recovery rate γ, which makes them transition to the

Recovered state (81). Recovered nodes cannot be infected anymore. The process ends when all

nodes are either in the Susceptible or Recovered state, and no more propagation can happen. In

addition to epidemics, the SIR process can also model the spread of information or rumors on a

network.
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Say that Ri is the set of nodes in the Recovered state after the rumor propagates from node i.

We can calculate their average opinion as
∑
j∈Ri

oj/|Ri|. Thus, this approach is exactly the same

as the one we describe in the previous section, with the difference that we look at Ri (the set of

infected nodes) rather than Ni (the direct neighbors of i).

Finally, rather than looking at the density plot, we bin all origin nodes according to their

opinion value and show the distribution of the average influenced set nodes for each bin. A

polarized network will show boxplots clustering on the top right and bottom left quadrants.

This can fix some of the conceptual problems of using the average opinion of the neighbours

Ni, since Ri contains nodes that are not directly connected to i. However, a few more conceptual

issues arise.

First, the β and γ parameters regulating the SIR event – as well as the number of bins in

the plot – are chosen somewhat arbitrarily. While the authors of (34) show that this does not

significantly impact the results as long as they are chosen within reasonable bounds, instructions

on which bounds are reasonable are absent and rely on judgment calls from the analyst.

Second, just like RWCG, the process relies on a randomized simulation, and thus can result

in different estimations even with the same G and o.

Finally, while replacing Nv with Rv should help in capturing the mesoscale organization

of G, this does not seem to happen in practice. Our experiments in the main paper show that

different variations in of the opinion-structural interplay generate indistinguishable boxplots.

2 Properties of δG,o

2.1 Lack of Maximum

δG,o lacks a maximum value, i.e., its domain is [0,+∞]. That is to say, given a G and an o we

can always find a G′ and o′ pair such that δG,o < δG′,o′ . We prove this statement by looking at a

simple graph structure: a chain graph. In a chain graph, nodes are placed on a one dimensional
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of δG,o (y axis) for a given number of nodes in the chain (x axis).

space and connected with their two closest neighbors with the exception of the two endpoints

of the chain, which are only connected to their closest neighbor.

Then we generate a corresponding o vector. All entries in o are set to zero except the two

entries for the endpoints of which one is set to −1 and the other to +1. We then grow the chain

graphs by extending the chain as Figure S2 shows in the top row.

For each additional node in the chain, δG,o grows by a predictable amount. Specifically,

δG,o =
√

|E| – see Figure S2 (bottom row). This is a known result in line with what was shown

in the original paper defining the baseline node vector distance measure (24).

This is the reason why it is not possible to simply normalize δG,o to be defined between 0

and 1. There is not a well-defined maximum that can be used as a normalization factor.

One could narrow down the problem. Rather than finding the maximum of δG,o for any G,

we could be looking for the maximum of δG,o for a given G, which implies finding the correct

o vector. Unfortunately this is not a well-understood problem yet and thus it is not feasible to

solve it here.
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The possible opinion vectors must satisfy o ∈ [−1, 1]|V |, i.e., the only requirement is that

oi ∈ [−1, 1] for each i where |V | is the number of nodes in the network. Hence, we may

formalize the maximum polarization problem (MPP) as

max
o∈[−1,1]|V |

δG,o (MPP)

Since the pseudoinverse Laplacian is positive semidefinite and the square root is monotone

increasing on R+, we may simply square the objective function δG,o → δ2G,o and equivalently

write MPP as:

max
o∈[−1,1]|V |

oTL†o

and then take the square root of the solution. As a first result, we can show that the opinion

vector o⋆ that achieves the maximum polarization will necessarily have entries that are either

+1 or −1. This implies that the domain of MPP can be changed from [−1, 1]|V | to {−1,+1}|V |,

i.e., with oi = ±1 for every node i.

Proposition 1 The opinion vector o⋆ that solves MPP lies in {−1,+1}|V |.

Proof: Since both L† and the domain for o are bounded, δG,o will be bounded from above by

some finite number and thus at least a supremum exists. As the domain [−1, 1]|V | is compact,

this supremum is achieved by some o⋆, the optimal solution to MPP. There is no uniqueness,

e.g., δG,o⋆ = δG,−o⋆ , but this is not required for the proof. Assume for contradiction that there is

a node i for which o⋆i ∈ (−1,+1), i.e., not equal to ±1.

Consider what happens if we increase or decrease the opinion of i, i.e., o⋆i ± ϵ, with ϵ small

enough such that this lies in [−1, 1]. Then the node vector distance becomes:

(o⋆ + ϵei)
TL†(o⋆ + ϵei) = δ2G,o⋆ + ϵ2eTi L

†ei + 2ϵeTi L
†o⋆,
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where ei is the ith unit vector. Since ϵ2 > 0 and L† is positive semidefinite with kernel

L†o = 0 if and only if o is a constant vector (which ei is not), the second term is positive. For

the last term, we may choose the sign of ϵ such that the term becomes positive, i.e. sign(ϵ) =

sign(eTi L
†o⋆) then we find that

δG,o⋆+ϵei > δG,o⋆

But this is in contradiction with o⋆ being the maximum polarization vector, hence our as-

sumption that a node i with oi ∈ (−1, 1) exists must be false and this concludes the proof.

□

Following this proposition, we can rewrite the MPP as:

max
o∈{−1,1}|V |

oTL†o,

i.e., where the optimization domain for o is now changed. We note that instead of choosing

a vector o in this domain, we may equivalently choose two subsets o+, o− which then determine

the vector o.

In this form, MPP is equivalent to the so-called (weighted) MAX CUT problem (82) where

the weight signs are determined by the off-diagonal entries of L†. If the off-diagonal is non-

positive (≤ 0), this problem is known to be NP hard. If the entries have mixed signs, as in the

case of MPP, the problem complexity transitions from hard to easy, as described in (82). But

this transition is not fully understood and we cannot be conclusive on the complexity of MPP

in general.

2.2 Scale Invariance

δG,o is scale invariant, meaning that equivalent topologies will get the same score even if they

have a different number of nodes. Of course, networks with a different number of nodes also
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have a slightly different topology, so the score is not exactly the same, but it will tend to the

same limit.

To illustrate, let us consider a relatively simple topology. We have a network G with two

cliques, connected by few edges between them. Specifically, the number of edges connecting

the two cliques is 5% of the number of edges inside each clique. For instance, if the cliques

contain 25 nodes, then there are 15 edges between them (15 = 0.05×25(25−1)/2). The edges

between the cliques are established randomly. The vector o assigns a value of −1 to all nodes

in one of the two cliques, and +1 to the nodes of the other.

We can now grow the network by increasing the size of the two cliques one node at a

time, while adding edges between the cliques to keep the density constant. Figure S3 shows

examples of the generated graphs with their corresponding polarization score δG,o. We can see

that the scores tend to a finite limit. The larger the system, the closer the score gets to the limit,

as the randomization of the connections between the cliques plays a smaller role in creating

10



 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100  120  140  160

δ
G

,o

# Removed Edges

 0

 20

 40

 60

 80

 100

 120

 0  100  200  300  400  500

δ
G

,o

# Reassigned Nodes

Figure S4: The polarization values for a two-community system. δG,o (y axis) as we mod-
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fluctuations in the score.

On the other hand, if we modify the actual topology of the network, the score will change

even if the scale – the number of nodes – remains constant. We illustrate this with two further

simulations.

In the first simulation, we have two equally sized communities, each containing 250 nodes.

One community has all positive random values in o while the other has negative random values.

We build this with a stochastic blockmodel, ensuring that there are roughly 150 edges between

the two communities. We then start removing these edges between the blocks one by one.

Intuitively, this should make the network more polarized, as it becomes harder and harder

for an opinion to propagate from one community to the other. This is exactly what we see in

the scores of δG,o, as Figure S4 (left) shows. The first removed edges have little impact, and the

impact of each removed edge grows exponentially as we get closer and closer to isolating the

two communities.

In the second simulation, we also have two blocks, but we start from an unbalanced situation.

One community has 495 nodes while the other only has 5. Every node in one community has
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an opinion value of +1, while every node in the other community has an opinion value of −1.

Then, we select one node at random from the large community and we move it to the small

community. We remove all of its connections to its old community and we add connections to

the new community at random, preserving its degree (if there are enough candidate neighbors

in the community to do so). Its opinion value also flips to align with its new community.

Figure S4 (right) shows the effect. Initially, as we reassign the first nodes, δG,o grows.

This is expected, since in the starting condition polarization is low as most people have the

same opinion and connect to each other. Around the 250th reassignment, δG,o plateaus and

then starts to decrease again. This shows how δG,o peaks when the conflicting communities are

roughly the same size. As soon as one community starts getting dominant in size, this lowers

the polarization of the system. The process of reassigning nodes stops at around 450 nodes

because the network becomes disconnected as a result of randomly removing nodes.

2.3 Effect of Density & Fragmentation

δG,o is sensitive to density, because the more dense a network is, the easier it is for an individual

to be exposed to a dissenting point of view. This sensitivity can be tested in two ways.

First, we can test it directly. We create a network of 1,680 nodes and divide it in two cliques.

The probability of edges being established between the cliques is 5%, i.e., pout = 0.05. Then

we start removing edges at random from this network, rendering it progressively less dense.

Figure S5 (left) shows the growth of δG,o as we remove more and more edges.

A second way for a network to become less dense is by fragmenting its community structure.

A network with many smaller cliques is less dense than a network with few large ones, even

when keeping the number of nodes and pout constant. As before, δG,o should grow because

people become more and more isolated and it is therefore harder to be exposed to both opposing

but also conforming views.
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To test this, we take our network of 1,680 nodes. We then divide it into a growing number of

cliques, from 2 to 16. All nodes in each clique have an o value of either +1 or −1, and there is

an equal number of cliques with either opinion value. We then connect cliques with pout = 0.05.

We only induce an even number of cliques to avoid having one opinion being over-represented

in the leftover clique – 1,680 is the smallest number divisible by all even numbers between 2 to

16.

Figure S5 (right) shows the growth of δG,o as we increase the fragmentation in communities,

which matches this intuition.

3 The Polarization Component Space

3.1 Main Results

To test our measure of polarization, we generate synthetic networks that vary along three dif-

ferent parameters and explore how δG,o changes along. In Figures 2 to 4 in the main text, one

parameter is varied at a time with the other two fixed but here we consider the full extent of the

parameter space.

We explore the three parameters as follows. The first parameter (µ) regulates the divergence
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of opinions. Each side of the opinion vector o peaks at ±µ. Thus, if µ is 0.2, the left side of o

peaks at −0.2 and the right side peaks at 0.2. For this reason, the higher the µ value, the more

polarization there is, as Figure 2 in the main paper shows.

The second parameter (pout) regulates the structural component by determining the proba-

bility of a node in a community to connect to a node in a different community – as we describe

in the Materials and Methods section in the main paper. The lower pout, the more polarization

there is, as nodes get progressively more isolated from opinions in outside communities.

Finally, for the mesoscale interplay, we use the parameter n which indicates how many

communities a community can link to. We pick possible neighboring communities among the n

closest ones in the opinion spectrum o. For example, if n = 7, all communities can link to each

other because with 8 communities there are only 7 possible neighbors. If n = 1, a community

can only link to its most immediate neighbor. The lower the n value, the more polarization there

is, because communities get progressively more isolated from potential connections with nodes

in a different portion of the opinion vector o.

Table S1 shows all values of δG,o across the three parameters. It reports the average of 25

randomly initialized runs. The standard errors of these means are in the order of 1% of the mean

value. This shows that these scores are stable and reliable as there are no wild fluctuations from

small differences in random initialization. Table S1 shows a smooth transition across these

parameters with no significant discontinuities. This supports our claim in the main paper that

δG,o is sensitive to all these factors.

3.2 Necessary Conditions for Polarization

While the opinion and structural component – and their interplay – are all important to quantify

polarization, there can be some degenerate cases in which one or two parameters out of three

dominate the value of δG,o. The most straightforward case is one in which there is no polariza-
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µ pout
n

7 6 5 4 3 2 1

0.0

0.0085 2.56 2.75 3.10 3.54 4.33 5.80 9.89
0.0042 3.47 3.81 4.43 5.23 6.69 9.89 19.73
0.0024 4.55 5.01 5.81 7.00 9.13 13.93 28.91
0.0012 6.38 7.09 8.14 9.93 13.48 20.48 43.16
0.0006 9.20 10.41 11.82 14.45 19.16 30.73 66.46
0.0003 13.22 14.70 17.21 20.71 28.68 44.81 100.27

0.2

0.0085 3.56 3.95 4.41 5.03 6.11 8.23 14.40
0.0042 4.94 5.42 6.25 7.38 9.54 14.10 28.20
0.0024 6.55 7.10 8.33 9.93 13.01 19.80 42.43
0.0012 8.99 10.16 11.61 14.32 19.11 29.24 62.86
0.0006 13.15 14.88 16.65 20.36 27.82 44.28 95.31
0.0003 18.81 20.92 24.42 28.97 41.20 63.45 144.62

0.4

0.0085 5.60 6.01 6.75 7.77 9.58 13.27 23.33
0.0042 7.88 8.47 9.64 11.51 15.14 22.79 46.10
0.0024 10.30 11.07 12.82 15.48 20.76 31.93 67.58
0.0012 14.46 15.66 18.15 22.32 30.24 47.19 101.40
0.0006 20.95 23.19 25.94 32.18 43.92 70.57 153.19
0.0003 29.88 32.43 38.52 45.72 65.51 102.47 232.88

0.6

0.0085 7.86 8.33 9.23 10.66 13.39 18.43 32.27
0.0042 11.08 11.73 13.26 15.84 21.04 31.88 64.33
0.0024 14.51 15.37 17.76 21.42 28.93 44.79 94.79
0.0012 20.55 21.88 25.19 30.76 42.42 65.49 141.78
0.0006 29.58 32.15 35.65 44.44 61.07 98.63 213.88
0.0003 42.21 45.08 52.66 62.80 90.67 144.05 328.65

0.8

0.0085 9.79 10.27 11.24 12.96 16.37 22.61 39.81
0.0042 13.86 14.47 16.20 19.36 25.89 39.22 79.18
0.0024 18.20 19.08 21.76 26.11 35.44 54.83 116.96
0.0012 25.70 26.99 30.65 37.53 51.98 80.82 174.90
0.0006 37.00 39.70 43.70 54.28 74.59 121.25 264.56
0.0003 52.93 55.57 64.44 76.14 110.66 176.67 405.67

Table S1: The evolution of polarization scores across all parameters. Each cell reports
the value of δG,o for different values of the opinion component (µ, row groups), the structural
component (pout, rows), and the opinion-structural mesolevel interplay (n, columns). Each cell
background is colored proportionally to the value of δG,o, from low (bright red) to high (dark
red).

15



tion due to the structural component. This is the case in which the network contains only one

node. As soon as we have two nodes we can measure distances between individuals and, as a

consequence, we have a non-zero contribution of the structural component to polarization and

δG,o.

The case of no polarization from the opinion component is more interesting. If everyone has

the same opinion, polarization should be zero, independent of the social structure. This is the

case for δG,o by definition, because if o is constant, then o+ − o− is zero and the whole formula

evaluates to zero. We can show this by creating a network with extreme structural separation –

two large cliques connected by few edges – and by drawing o from a normal distribution with

decreasing standard deviation.

Figure S6 shows what happens as we approach zero opinion divergence: δG,o naturally

captures the decrease in diversity of opinions. Both assortativity and RWCG are blind to those

changes and still estimate a constant polarization value even for insignificant differences of

opinion. The average neighbor opinion plot could capture the differences, provided the KDE

is initialized with the proper parameters – here we fail to see a difference between the last two

cases only because we have too large bandwidth. The average influenced set opinion can detect

a lack of opinion divergence.

3.3 Secondary Polarization Components

It is possible to consider other aspects as potential components of polarization. For instance,

in Figure 1 in the main paper, we move from a random Gn,p graph with random opinion as-

signments to a graph with communities that have assortative opinions. In other words, we make

communities whose nodes all occupy a contiguous portion of the opinion spectrum: a node with

a given opinion will be embedded in a community whose nodes have a similar opinion to them.

In doing this, we are skipping over a potential polarization component: what happens if we
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Figure S6: Polarization for vanishing opinion divergence. Each row shows (top to bottom):
the network structure; the opinion distribution; the average values over 25 runs of δG,o, ρG,o,
and RWCG with their standard deviations; the density maps of opinions (x axis) and average
neighbor opinion (y axis); boxplots of seed opinion (x axis) and average opinion of the influ-
enced set after a SIR propagation (y axis). The opinion distribution is a normal distribution with
average zero and standard deviation of (a) 0.2, (b) 0.05, (c) 0.001.

have structural communities, but opinions are still randomly distributed within each commu-

nity? In such a scenario, having a given opinion tells a node nothing about their companions in
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Figure S7: Polarization and opinion purity. The average and standard deviation value of δG,o

(y axis) across 50 independent runs for a random graph and different levels of purity in a graph
with strong communities.

the same community.

The reason we do not consider this as a polarization component is because polarization

would not change in this extreme scenario. If opinions are distributed randomly, it does not

matter whether there are communities or whether the graph is random, because each community

in isolation could be considered as a sort of random graph.

To illustrate, we create a graph with 8 communities using an SBM and random o assignment

with µ = 0.8 (high opinion divergence) and pout = 0.0003 (which should imply high structural

separation). After 50 independent runs, we observe δG,o = 9.63 ± 0.16. For each run, we also

create a randomized version of the graph by performing enough double edge swaps to render

the graph effectively random. This random graph has an indistinguishable polarization score:

δG,o = 9.64 ± 0.17. We do edge swaps rather than generating an alternative random graph

because this way we can ensure that the graphs have the exact same number of edges.

The real factor that induces polarization in the system is a community’s purity – how well-

aligned communities are with o scores. If purity is 1, all nodes in all communities share similar

opinion scores. If purity is 0, opinion scores are random. Figure S7 shows how δG,o varies as

we increase the purity of our communities. This empirical result matches with what we would
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expect theoretically: in the low purity networks, everyone is exposed to different views and the

polarization score should be low.

Since one cannot have pure communities if there are no communities, we prefer using pout

to discuss the structural component of polarization rather than purity.

4 Interpretation of the Units

In the Materials and Methods section in the main paper, we show the relationship between δG,o

and effective resistance and heat diffusion processes. Here, we show what happens if some

of the assumptions we made do not hold, and we provide additional information about these

relationships.

4.1 δG,o and Effective Resistance in General

If the assumptions that
∑

o+i =
∑

o−i = 1 do not hold, and it is not reasonable to normalize

the vectors such that we can make them hold by construction, we can still arrive at a similar

interpretation. Let ō :=
1

|V |
∑

oi be the overall mean opinion. Then we say that two individuals

agree if they are on the same “side” of ō (both larger, or both smaller), and disagree if they are

not. Then we assign to every node the variable y equal to yi =
(oi − ō)

1
2

∑
|oi − ō|

, and we consider

the positive and negative opinions y+ and y− as before. In other words, the variable yi captures

how far an opinion is from the mean, and whether it is larger or smaller than the mean. We

now notice that for y+ and y− the following holds: by construction – i.e., by removing the

mean – we know that the positive sum equals the negative sum, and by normalization with

Z :=
1

2

∑
|oi − ō|, the sums equal one. We can thus define the random variables Y + and Y −

with distribution given by y+ and y− and find that, in general, the polarization can be interpreted

as:
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δG,o =

(
1

2

∑
|oi − ō|

)√
E[ωY +Y − ]− 1

2
E[ωY +Y + + ωY −Y − ],

so it is still the difference in distance between conflicting individuals and agreeing individ-

uals, but in this case conflicting and agreeing is defined based on whether they are on the same

side of the mean opinion or not; similarly the probability of an individual is proportional to

their distance to the mean. Furthermore, the factor Z is included, which quantifies how far the

opinions are, on average, from the mean opinion.

4.2 Heat Diffusion

In support of our interpretation of δG,o as the (square root of the) time it takes for heat to diffuse

in the network, we calculate both values on the collections of SBMs used to generate Table S1.

That is, we explore all possible values of opinion divergence µ, community interconnectedness

pout, and mesolevel organization n.

Figure S8 shows the result. We can see that the opinion divergence factor µ provides a con-

stant multiplicative factor – if the opinion vectors are more extreme it takes a constant additional
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amount of time to reach equilibrium. If we take that factor out, δ2G,o correlates almost perfectly

with the amount of time required for o to have a standard deviation lower than ϵ = 2 × 10−4.

The choice of ϵ does not matter, provided it is a small value.

All the power laws we calculated independently for each µ value have an R2 ∼ 0.996, and an

exponent approximately equal to 1, showing a linear relationship between δ2G,o and equilibrium

time.

5 Relations to Network Covariance

As we show in the Materials and Methods section in the main paper, δG,o de facto measures

the Generalized Euclidean distance (24) between two vectors o+ and o− on the nodes of a

given graph G. We show here that this polarization measure can also be seen as a measure

of covariance between the opposing opinion distributions, in the sense of (52). If V+ are the

nodes with positive opinion oi > 0 and V− the nodes with negative opinion, then we define the

following joint distribution P between pairs of nodes

(P )ij :=


1
2
oioj if i ∈ V+ and j ∈ V−,

1
2
oioj if i ∈ V− and j ∈ V+,

0 otherwise,

which can also be written as a |V | × |V | matrix as:

P =
1

2

(
o+o−T + o−o+T

)
.

where o± are the vectors with only positive (negative) opinions. This is a distribution which

selects a random pair of nodes with opposing opinions, with probability of picking each node

proportional to their opinion. So if ov = 2ow, then v is twice as likely to be picked as w. The

covariance of this joint distribution, with respect to the effective resistance matrix Ω = (ωij), is
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calculated according to (52) as

covω(P ) =
1

2
tr
((
P11TP − P

)
Ω
)

(with 1 = (1, . . . , 1))

=
1

2
1TPΩP1− 1

2
tr (PΩ)

=
1

2

(
1

4
o+TΩo+ +

1

4
o−TΩo− +

1

2
o+TΩo−

)
− 1

2

(
o+TΩo−

)
=

1

2

(
1

4
o+TΩo+ +

1

4
o−TΩo− − 1

2
o+TΩo−

)
=

1

8

(
o+ − o−

)T
Ω
(
o+ − o−

)
= −1

4

(
o+ − o−

)T
L† (o+ − o−

)
(following the definition of effective resistance)

= −1

4
δ2G,o

This shows that δG,o is proportional to minus the covariance of distribution P . Our polar-

ization measure captures the covariance of a pair of nodes with opposing opinions – a high co-

variance signifies that they are close together in the network, while a small covariance indicates

that they are far apart. This is in line with how our measure intends to quantify polarization.

6 Multidimensional Polarization

6.1 Formulation

As introduced, our polarization measure δG,o is limited to measuring the polarization that arises

in a social network on a binary or unidimensional topic. Any individual can have one of two

opinions {+,−}, with a given strength or conviction recorded in the vector o. While useful

in the case of debates with {for, against} stances or in two-party political systems such as the

United States, this approach cannot handle the case of multidimensional issues. Here, we briefly

discuss how our binary measure can be extended to deal with these more complex cases.

Let us assume that any individual can support an opinion in a set of options {A1, A2, . . . , Ak}

– these can for instance be k political parties – with a certain strength given by the vector oAi
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that records for each individual how strongly they support opinion Ai. An overall measure of

polarization can then be obtained as an average over all possible pairwise conflicts, as

δG,o =

√√√√(k
2

)−1 k∑
i=1

k∑
j=i+1

(oAi − oAj)TL†(oAi − oAj).

If all the opinion vectors are normalized, then the same derivation we use in the Methods

section in the main paper can be used here, which means that this multidimensional polariza-

tion can intuitively still be interpreted as a measure of the difference in (effective resistance)

distance between disagreeing and agreeing individuals. We note that other extensions to multi-

dimensional measures might be possible, for instance assigning a different weight to the differ-

ent pairwise conflicts.

6.2 Behavior

We can show that the multidimensional version of our measure behaves in the same way as

the original measure across the various components and it is equally intuitive. To do so, we

repeat our synthetic experiments. Rather than having two vectors o+ and o−, we now have eight

different opinions since our synthetic networks contain eight communities. Each community i

contains only nodes with nonzero values for opinion Ai and zero for all other opinions Aj . The

opinion vectors are constructed with the same procedure outlined for the simple unidimensional

case, with µ representing the mode value. We construct the network with the same algorithm,

so also parameters pout and n retain their meaning.

By running the experiments, we can create an equivalent of Table S1 for the multidimen-

sional case. Table S2 is the result. We can see that the overall behavior of the multidimensional

measure is the same as the unidimensional one. We can then conclude that the interpretation

of the two measures is the same, and that we can apply our extension to the multidimensional

case.
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µ pout
n

7 6 5 4 3 2 1

0.0

0.0085 1.24 1.25 1.27 1.34 1.39 1.54 2.09
0.0042 1.60 1.60 1.69 1.79 1.91 2.40 4.07
0.0024 2.02 2.06 2.08 2.28 2.57 3.31 6.00
0.0012 2.75 2.83 2.98 3.21 3.66 4.73 8.77
0.0006 3.78 3.90 4.15 4.52 5.31 6.78 13.38
0.0003 5.45 5.65 5.91 6.57 7.59 10.38 19.86

0.2

0.0085 1.78 1.78 1.83 1.90 1.97 2.19 3.14
0.0042 2.29 2.30 2.40 2.56 2.79 3.40 5.84
0.0024 2.88 2.97 3.00 3.29 3.81 4.71 8.62
0.0012 3.91 4.02 4.27 4.54 5.21 6.97 13.16
0.0006 5.63 5.61 6.08 6.59 7.66 10.12 19.64
0.0003 7.87 8.24 8.58 9.63 11.14 15.34 29.61

0.4

0.0085 2.80 2.81 2.86 3.00 3.15 3.57 5.25
0.0042 3.70 3.81 3.93 4.28 4.69 5.84 10.20
0.0024 4.83 4.89 5.16 5.54 6.33 8.11 14.85
0.0012 6.67 6.93 7.19 7.90 9.35 11.80 22.70
0.0006 9.58 9.88 10.62 11.31 13.25 17.70 33.97
0.0003 13.65 13.90 14.86 16.92 18.94 26.21 51.17

0.6

0.0085 3.93 3.97 4.05 4.20 4.48 5.14 7.56
0.0042 5.46 5.48 5.68 6.14 6.77 8.62 14.89
0.0024 7.01 7.19 7.50 8.12 9.38 11.97 22.21
0.0012 10.01 10.22 10.58 11.55 13.49 17.56 33.84
0.0006 14.10 14.45 15.30 16.51 19.62 25.88 50.81
0.0003 20.14 20.86 21.93 24.53 28.28 38.41 75.07

0.8

0.0085 4.89 4.94 5.04 5.24 5.60 6.50 9.69
0.0042 6.85 6.88 7.21 7.73 8.66 11.10 19.19
0.0024 8.97 9.10 9.50 10.37 11.90 15.30 28.24
0.0012 12.70 13.07 13.64 14.79 17.27 22.81 43.36
0.0006 18.08 18.42 19.47 21.05 24.95 33.07 64.88
0.0003 25.81 26.72 28.00 31.80 36.27 49.79 96.50

Table S2: The evolution of multidimensional polarization scores across all parameters.
Same legend as Table S1.

The only difference is that the absolute values of the measure tend to be smaller. This might

be due to the fact that the average of all pairwise conflicts decreases as we increase the number

of opinions, as by construction some opinions are closer to each other. However, we leave this
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investigation for future work, along with the consideration that taking the average of all pairwise

conflicts might not necessarily be the best way to expand our measure.

7 Sensitivity to Measurement Errors

While we have assumed that the network G and opinion vector o are given as inputs from

which we calculate the polarization, it is important to acknowledge that this data is at best an

approximation of the real underlying opinions and social network connections. In particular,

measurement errors and other inherent difficulties in obtaining and representing such complex

data might mean that the available opinion vector o only records the opinions approximately.

This can be modeled as an additive measurement error o = ô + ϵ where ô is the real opinion

vector and ϵ the error vector. If ϵ is large relative to the measurements, i.e., the errors are of

the same order as the opinions (and uncorrelated), then there is no real hope for a measure that

accurately represents the real polarization. If, on the other hand, the error vector is relatively

small, we would hope that the polarization measure is a good approximation.

This is the case for our proposed polarization measure. If we assume that ∥ϵ∥ is small, then

the polarization δG,o calculated based on the available opinion measurements o is close to the

polarization δG,ô calculated based on the underlying true opinions ô. In the derivation below,

we show that

|δG,o − δG,ô| ≤ ∥ϵ∥µ−1/2
min (L), (1)

where µmin(L) is the smallest nonzero Laplacian eigenvalue, which is a fixed number for a given

network. The error in our polarization measure is thus at most proportional to the measurement

error ∥ϵ∥.
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The bound (1) follows from the assumption that ∥ϵ∥ is small:

δG,ô − δG,o =
√
(ô+ − ô−)TL†(ô+ − ô−)−

√
(ô+ − ô− + ϵ)TL†(ô+ − ô− + ϵ)

= δG,ô

(
1−

√
1 +

2ϵTL†(ô+ − ô−) + ϵTL†ϵ

δ2G,ô

)

= δG,ô

(
1−

√
1 +

2ϵTL†(ô+ − ô−)

δ2G,ô

)
(step 1)

= δG,ô

(
1−

[
1 +

ϵTL†(ô+ − ô−)

δ2G,ô

])
(step 2)

⇒ |δG,ô − δG,o| =
∣∣∣∣ϵTL†(ô+ − ô−)

δG,ô

∣∣∣∣
≤

√
ϵTL†ϵ (step 3)

≤ ∥ϵ∥µ−1/2
min (L) (step 4).

In step 1, we use the assumption that ϵ is small, such that ϵTL†ϵ is negligible with respect to

the other terms. In step 2, we use the Taylor expansion
√
1 + x = 1 + x

2
+ O(x2) in combi-

nation with the small-error assumption. In step 3, we invoke the Cauchy-Schwarz inequality

ϵTL†(ô+ − ô−) ≤
√
ϵTL†ϵ

√
(ô+ − ô−)TL†(ô+ − ô−). Step 4, finally, follows from the fact that

the largest eigenvalue of L† is the inverse of the smallest nonzero eigenvalue of the pseudoin-

verse Laplacian, as µmax(L
†) = µ−1

min(L).

8 Twitter & Congress Data

8.1 Summary Statistics

Table S3 shows some summary statistics for the networks extracted from the Twitter data. The

table shows, among other things, how well one could partition the network by assigning a

node to a community depending on the sign of its o value. We estimate this by calculating the

modularity of the partition, which compares the number of edges inside each community with
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Network |V | |E| ℓ ∆ Q
Obama 204 1,377 2.762 0.183 0.027
Gun Control 1,092 22,471 2.813 0.273 0.176
Abortion 2,211 55,328 2.773 0.190 0.343
VP Debate 5,407 116,249 2.967 0.073 0.364
Second Debate 4,697 94,497 3.115 0.084 0.474
Election 3,965 40,443 3.493 0.088 0.329

Table S3: Summary statistics of the Twitter debate networks. For each network, we report:
the number of nodes |V |, the number of edges |E|, the average shortest path length ℓ, the tran-
sitivity of the network ∆, and the modularity values Q we would get by bisecting the networks
in two communities identified by having a o value of a given sign.

the one we would get with a random network with the same degree distribution as the original

one but no communities (83). This is another rough estimate of structural separation.

Table S4 shows the same summary statistics for all the US House of Representatives net-

works. Consistently with what we discuss in the main paper, we can see a noticeable increase

in modularity starting at the 99th Congress. We can also see that the share of congressmen with

more extreme opinion scores steadily increases over time.

8.2 Polarization Components Correlation

Since our definition of polarization is made of two components – opinion and structure – and

their mesoscale interplay, we are implicitly assuming that there is a correlation between them.

Here, we test whether this assumption holds on the real-world data gathered on Twitter and the

US House of Representatives.

We estimate the opinion component by calculating the average opinion of each side and

then averaging their absolute values. For instance, in the 116th Congress, the average positive

DW-NOMINATE score was 0.5, while the average negative score was −0.37. We thus infer

that µ116 = (0.5 + 0.37)/2 = 0.43.

The structural component pout comes from counting the number of edges across communi-

27



Congress |V | |E| ℓ ∆ Q |o| > .5
81 423 39,735 1.592 0.761 0.309 0.070
82 425 43,446 1.549 0.782 0.315 0.066
83 419 36,988 1.625 0.782 0.308 0.067
84 421 40,632 1.576 0.749 0.311 0.076
85 415 38,378 1.590 0.733 0.295 0.082
86 426 42,151 1.563 0.798 0.283 0.095
87 418 39,344 1.598 0.785 0.325 0.083
88 417 39,870 1.590 0.810 0.359 0.086
89 417 39,923 1.588 0.820 0.275 0.091
90 419 36,292 1.638 0.751 0.285 0.081
91 398 33,925 1.613 0.717 0.169 0.087
92 407 35,908 1.599 0.738 0.223 0.091
93 413 40,908 1.559 0.757 0.214 0.104
94 411 41,328 1.549 0.791 0.219 0.105
95 413 41,547 1.546 0.771 0.200 0.108
96 419 43,847 1.540 0.782 0.260 0.116
97 411 39,776 1.571 0.758 0.288 0.119
98 427 49,006 1.499 0.843 0.298 0.114
99 425 46,155 1.558 0.880 0.351 0.120
100 421 45,810 1.556 0.899 0.341 0.120
101 425 46,410 1.562 0.876 0.321 0.130
102 431 48,138 1.546 0.907 0.346 0.131
103 430 48,355 1.516 0.950 0.405 0.155
104 427 45,443 1.621 0.956 0.431 0.189
105 426 44,595 1.700 0.958 0.465 0.194
106 427 44,713 1.593 0.930 0.458 0.192
107 427 44,693 1.590 0.947 0.467 0.203
108 429 45,463 1.807 0.987 0.486 0.203
109 429 45,607 1.739 0.985 0.487 0.220
110 422 44,340 1.821 0.989 0.481 0.219
111 423 46,515 1.544 0.953 0.416 0.214
112 432 47,600 1.520 0.960 0.435 0.286
113 424 44,899 1.835 0.990 0.485 0.295
114 433 47,662 1.546 0.992 0.461 0.315
115 432 47,079 1.587 0.981 0.470 0.327
116 427 45,900 1.546 0.988 0.475 0.296

Table S4: Summary statistics of the US House of Representatives networks. Same legend
as Table S3. The additional |o| > .5 columns reports the share of congressmen with an opinion
score outside the [−0.5, 0.5] interval.
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Figure S9: The correlation between the opinion and structural components of polarization
on real-world networks. Opinion divergence on the x axis, structural separation on the y axis.
(Left) Twitter, (Right) US House of Representatives.

ties over the potential number of possible edges across communities, i.e., the number of node

pairs belonging to different communities. We employ a Monte Carlo Markov Chain approach

for the inference of stochastic block models (84) (SBM).

We are unable to estimate the opinion-structural mesoscale interplay, which we indicate

with n. This is because real-world data does not organize as neatly as our synthetic experiments.

Even if there are multiple communities, they will always have some degree of interconnected-

ness. It follows that there is no easy way to calculate n, and since finding an appropriate way

goes beyond the scope of this paper, we skip the estimation of this parameter.

Figure S9 shows the relationship between µ and pout on all real-world networks we study.

We observe the expected negative relationship. High µ correspond to high opinion divergence

which we expect to cause a high structural separation by isolating the communities, causing a

low value for pout, which is the probability of edges appearing across communities.

The relationship is exponential (note the logarithmic scale in the y axis). In the US House

of Representatives network, we obtain a −0.83 Pearson correlation coefficient and a −0.78

Spearman correlation coefficient, both significant as p < 0.001. We do not obtain significant

coefficients for the Twitter networks, but this is most likely due to the small sample size. The
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Figure S10: The communities in the Twitter abortion network. In both networks, nodes are
Twitter users, connected by an edge if the two nodes interacted. The edge color is the average
opinion value of the two connected nodes. The two networks have the exact same layout. (Left)
Node color is the o value of the node (from −1 dark blue, to +1 dark red). (Right) Node color
is the inferred community. Edge color is the same as in the left network.

coefficients for the Pearson and Spearman correlations are still negative and equal to −0.45 and

−0.6, respectively.

We can conclude that indeed the structural and opinion components of our polarization

definition are correlated and reinforce each other.

8.3 Communities in the Twitter Abortion Debate Network

In the main paper we argue that one of the reasons for the Twitter abortion debate network to

score higher δG,o values is the fact that the network has four nested communities rather than

two flat ones. Here, we provide support for this statement. To do so, we infer the community

structure of the network using the same method we used in the previous section.

Figure S10 shows the result. On the left, we depict the network as it is in Figure 5 of

the main paper. We can see that both the blue and the red community in the network have

subcommunities, with brighter and lighter hues, showing a distinction in interaction patterns
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blue green purple red
blue 0.0981 0.0078 0.0009 0.0018
green 0.0078 0.0391 0.0019 0.0003
purple 0.0009 0.0019 0.0614 0.0219
red 0.0018 0.0003 0.0219 0.1393

Table S5: The edge connection probabilities for the communities in the Twitter abortion
network. Each cell and its color reports the probability that a node in one block connects to a
node in another block.

Community AVG o
blue -0.52
green -0.40
purple 0.40
red 0.56

Table S6: The average opinion value for the Twitter abortion communities. Each cell –
and its color – reports the average o values for the nodes in each block in the Twitter abortion
network.

between moderates and extremists. This is confirmed by the SBM community inference, which

is shown on the right of Figure S10. Here, we can see that both the left and the right side are

further split in two communities which, upon visual inspection, overlap with the brighter and

darker hues on either side.

This is not just a visual artifact. Table S5 reports the probability of a block community to

connect to another block community. We can see that the diagonal entries for communities

paired on the same side of the network are higher than the ones with their community compan-

ion. This means that, e.g., the green community is more tightly knit with itself than with the

blue community. If the network had only two communities and this hierarchical division was

an artifact, there should be no difference in the edge probabilities between the green and blue

block. The fact that we see such a difference shows that the network indeed has a mesoscale

organization in four communities.

The communities also have distinctive opinion values. Table S6 shows the average o value
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for the nodes in each community. Again, we can see noticeable differences, showing that indeed

each community is distinct from the others.

9 Supplementary Material Captions

Supplementary File F1. This is a zip file containing all the code necessary to reproduce the

results in the paper. Data available at the links provided in the README file. The archive is

also available at https://www.michelecoscia.com/?page_id=2105.
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